Přejít k hlavnímu obsahu
Vyřešte pro: y
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

a+b=2 ab=-8
Chcete-li rovnici vyřešit, součinitel y^{2}+2y-8 použijte vzorec y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
-1,8 -2,4
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je kladný, má kladné číslo vyšší absolutní hodnotu než záporné číslo. Uveďte všechny celočíselné páry, které dávají -8 produktu.
-1+8=7 -2+4=2
Vypočtěte součet pro jednotlivé dvojice.
a=-2 b=4
Řešením je dvojice se součtem 2.
\left(y-2\right)\left(y+4\right)
Přepište rozložený výraz \left(y+a\right)\left(y+b\right) pomocí získaných hodnot.
y=2 y=-4
Chcete-li najít řešení rovnic, vyřešte y-2=0 a y+4=0.
a+b=2 ab=1\left(-8\right)=-8
Chcete-li rovnici vyřešit, koeficient na levé straně seskupte. Nejprve je třeba přepsát levou stranu jako y^{2}+ay+by-8. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
-1,8 -2,4
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je kladný, má kladné číslo vyšší absolutní hodnotu než záporné číslo. Uveďte všechny celočíselné páry, které dávají -8 produktu.
-1+8=7 -2+4=2
Vypočtěte součet pro jednotlivé dvojice.
a=-2 b=4
Řešením je dvojice se součtem 2.
\left(y^{2}-2y\right)+\left(4y-8\right)
Zapište y^{2}+2y-8 jako: \left(y^{2}-2y\right)+\left(4y-8\right).
y\left(y-2\right)+4\left(y-2\right)
Koeficient y v prvním a 4 ve druhé skupině.
\left(y-2\right)\left(y+4\right)
Vytkněte společný člen y-2 s využitím distributivnosti.
y=2 y=-4
Chcete-li najít řešení rovnic, vyřešte y-2=0 a y+4=0.
y^{2}+2y-8=0
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
y=\frac{-2±\sqrt{2^{2}-4\left(-8\right)}}{2}
Tato rovnice má standardní tvar: ax^{2}+bx+c=0. Do kvadratického vzorce, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, dosaďte 1 za a, 2 za b a -8 za c.
y=\frac{-2±\sqrt{4-4\left(-8\right)}}{2}
Umocněte číslo 2 na druhou.
y=\frac{-2±\sqrt{4+32}}{2}
Vynásobte číslo -4 číslem -8.
y=\frac{-2±\sqrt{36}}{2}
Přidejte uživatele 4 do skupiny 32.
y=\frac{-2±6}{2}
Vypočítejte druhou odmocninu čísla 36.
y=\frac{4}{2}
Teď vyřešte rovnici y=\frac{-2±6}{2}, když ± je plus. Přidejte uživatele -2 do skupiny 6.
y=2
Vydělte číslo 4 číslem 2.
y=-\frac{8}{2}
Teď vyřešte rovnici y=\frac{-2±6}{2}, když ± je minus. Odečtěte číslo 6 od čísla -2.
y=-4
Vydělte číslo -8 číslem 2.
y=2 y=-4
Rovnice je teď vyřešená.
y^{2}+2y-8=0
Takové kvadratické rovnice je možné vyřešit doplněním na druhou mocninu dvojčlenu. Pokud chcete rovnici doplnit na druhou mocninu dvojčlenu, musí být nejdříve ve tvaru x^{2}+bx=c.
y^{2}+2y-8-\left(-8\right)=-\left(-8\right)
Připočítejte 8 k oběma stranám rovnice.
y^{2}+2y=-\left(-8\right)
Odečtením čísla -8 od něj samotného dostaneme hodnotu 0.
y^{2}+2y=8
Odečtěte číslo -8 od čísla 0.
y^{2}+2y+1^{2}=8+1^{2}
Vydělte 2, koeficient x termínu 2 k získání 1. Potom přidejte čtvereček 1 na obě strany rovnice. Tímto krokem bude levá strana rovnice ve výrazu o dokonalý čtverec.
y^{2}+2y+1=8+1
Umocněte číslo 1 na druhou.
y^{2}+2y+1=9
Přidejte uživatele 8 do skupiny 1.
\left(y+1\right)^{2}=9
Činitel y^{2}+2y+1. Obecně platí, že pokud je x^{2}+bx+cdokonalý čtverec, dá se vždy rozložit jako \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+1\right)^{2}}=\sqrt{9}
Vypočítejte druhou odmocninu obou stran rovnice.
y+1=3 y+1=-3
Proveďte zjednodušení.
y=2 y=-4
Odečtěte hodnotu 1 od obou stran rovnice.