Přejít k hlavnímu obsahu
Rozložit
Tick mark Image
Vyhodnotit
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

a+b=1 ab=1\left(-12\right)=-12
Roznásobte výraz podle seskupení. Nejprve musí být výraz přepsán jako x^{2}+ax+bx-12. Pokud chcete najít a a b, nastavte systém, který se má vyřešit.
-1,12 -2,6 -3,4
Vzhledem k tomu, že výraz ab je záporný, mají hodnoty a a b opačné znaménko. Vzhledem k tomu, že výraz a+b je kladný, má kladné číslo vyšší absolutní hodnotu než záporné číslo. Uveďte všechny celočíselné páry, které dávají -12 produktu.
-1+12=11 -2+6=4 -3+4=1
Vypočtěte součet pro jednotlivé dvojice.
a=-3 b=4
Řešením je dvojice se součtem 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
Zapište x^{2}+x-12 jako: \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
Koeficient x v prvním a 4 ve druhé skupině.
\left(x-3\right)\left(x+4\right)
Vytkněte společný člen x-3 s využitím distributivnosti.
x^{2}+x-12=0
Kvadratický mnohočlen můžete rozložit pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kde x_{1} a x_{2} jsou řešení kvadratické rovnice ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Všechny rovnice ve tvaru ax^{2}+bx+c=0 je možné vyřešit jako kvadratickou rovnici: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Výsledkem kvadratické rovnice jsou dvě řešení, jedno pro součet a druhé pro rozdíl ±.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
Umocněte číslo 1 na druhou.
x=\frac{-1±\sqrt{1+48}}{2}
Vynásobte číslo -4 číslem -12.
x=\frac{-1±\sqrt{49}}{2}
Přidejte uživatele 1 do skupiny 48.
x=\frac{-1±7}{2}
Vypočítejte druhou odmocninu čísla 49.
x=\frac{6}{2}
Teď vyřešte rovnici x=\frac{-1±7}{2}, když ± je plus. Přidejte uživatele -1 do skupiny 7.
x=3
Vydělte číslo 6 číslem 2.
x=-\frac{8}{2}
Teď vyřešte rovnici x=\frac{-1±7}{2}, když ± je minus. Odečtěte číslo 7 od čísla -1.
x=-4
Vydělte číslo -8 číslem 2.
x^{2}+x-12=\left(x-3\right)\left(x-\left(-4\right)\right)
Rozložte původní výraz pomocí transformace ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Nahraďte 3 za x_{1} a -4 za x_{2}.
x^{2}+x-12=\left(x-3\right)\left(x+4\right)
Zjednodušte všechny výrazy ve tvaru p-\left(-q\right) na p+q.