Vyhodnotit
\frac{32}{3}\approx 10,666666667
Sdílet
Zkopírováno do schránky
\int 3-x^{2}-2x\mathrm{d}x
Nejdříve vyhodnoťte neurčitý integrál.
\int 3\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -2x\mathrm{d}x
Integrujte součet člen po členu.
\int 3\mathrm{d}x-\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
V každém členu vytkněte konstantu.
3x-\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x
Najděte si integrál 3 pomocí \int a\mathrm{d}x=ax tabulky společného integrálového pravidla.
3x-\frac{x^{3}}{3}-2\int x\mathrm{d}x
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Vynásobte číslo -1 číslem \frac{x^{3}}{3}.
3x-\frac{x^{3}}{3}-x^{2}
Vzhledem k tomu, že \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pro k\neq -1, nahraďte \int x\mathrm{d}x \frac{x^{2}}{2}. Vynásobte číslo -2 číslem \frac{x^{2}}{2}.
3\times 1-\frac{1^{3}}{3}-1^{2}-\left(3\left(-3\right)-\frac{\left(-3\right)^{3}}{3}-\left(-3\right)^{2}\right)
Určitý integrál je primitivní funkcí výrazu vyhodnocené jako horní limita integrace minus primitivní funkce vyhodnocená jako spodní limita integrace.
\frac{32}{3}
Proveďte zjednodušení.
Příklady
Kvadratická rovnice
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Lineární rovnice
y = 3x + 4
Aritmetika
699 * 533
Matice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Soustava rovnic
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivace
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrace
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limity
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}