Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Derivovat vzhledem k x
Tick mark Image

Podobné úlohy z vyhledávání na webu

Sdílet

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)x^{2}}{x\left(x-1\right)})
Rozloží výrazy, které ještě nejsou rozložené v: \frac{x^{2}\left(2+x\right)}{x^{2}-x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+2\right)}{x-1})
Vykraťte x v čitateli a jmenovateli.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+2x}{x-1})
S využitím distributivnosti vynásobte číslo x číslem x+2.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+2x^{1})-\left(x^{2}+2x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
V případě jakýchkoli dvou diferencovatelných funkcí je derivace podílu dvou funkcí rozdílem mezi násobkem jmenovatele a derivace čitatele a násobkem čitatele a derivace jmenovatele, to celé děleno jmenovatelem na druhou.
\frac{\left(x^{1}-1\right)\left(2x^{2-1}+2x^{1-1}\right)-\left(x^{2}+2x^{1}\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
Derivace mnohočlenu je součtem derivací jeho členů. Derivace konstanty je 0. Derivace členu ax^{n} je nax^{n-1}.
\frac{\left(x^{1}-1\right)\left(2x^{1}+2x^{0}\right)-\left(x^{2}+2x^{1}\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Proveďte zjednodušení.
\frac{x^{1}\times 2x^{1}+x^{1}\times 2x^{0}-2x^{1}-2x^{0}-\left(x^{2}+2x^{1}\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Vynásobte číslo x^{1}-1 číslem 2x^{1}+2x^{0}.
\frac{x^{1}\times 2x^{1}+x^{1}\times 2x^{0}-2x^{1}-2x^{0}-\left(x^{2}x^{0}+2x^{1}x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Vynásobte číslo x^{2}+2x^{1} číslem x^{0}.
\frac{2x^{1+1}+2x^{1}-2x^{1}-2x^{0}-\left(x^{2}+2x^{1}\right)}{\left(x^{1}-1\right)^{2}}
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele.
\frac{2x^{2}+2x^{1}-2x^{1}-2x^{0}-\left(x^{2}+2x^{1}\right)}{\left(x^{1}-1\right)^{2}}
Proveďte zjednodušení.
\frac{x^{2}-2x^{1}-2x^{0}}{\left(x^{1}-1\right)^{2}}
Slučte stejné členy.
\frac{x^{2}-2x-2x^{0}}{\left(x-1\right)^{2}}
Pro všechny členy t, t^{1}=t.
\frac{x^{2}-2x-2}{\left(x-1\right)^{2}}
Pro všechny členy t s výjimkou 0, t^{0}=1.