Přejít k hlavnímu obsahu
Vyhodnotit
Tick mark Image
Derivovat vzhledem k x
Tick mark Image
Graf

Podobné úlohy z vyhledávání na webu

Sdílet

\frac{10x}{x+3}-\frac{x+3}{x+3}
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo 1 číslem \frac{x+3}{x+3}.
\frac{10x-\left(x+3\right)}{x+3}
Vzhledem k tomu, že \frac{10x}{x+3} a \frac{x+3}{x+3} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\frac{10x-x-3}{x+3}
Proveďte násobení ve výrazu 10x-\left(x+3\right).
\frac{9x-3}{x+3}
Slučte stejné členy ve výrazu 10x-x-3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x}{x+3}-\frac{x+3}{x+3})
Pokud chcete sčítat nebo odčítat výrazy, rozšiřte je, aby měly stejné jmenovatele. Vynásobte číslo 1 číslem \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x-\left(x+3\right)}{x+3})
Vzhledem k tomu, že \frac{10x}{x+3} a \frac{x+3}{x+3} mají stejného jmenovatele, můžete je odečíst odečtením jejich čitatelů.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x-x-3}{x+3})
Proveďte násobení ve výrazu 10x-\left(x+3\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9x-3}{x+3})
Slučte stejné členy ve výrazu 10x-x-3.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(9x^{1}-3)-\left(9x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
V případě jakýchkoli dvou diferencovatelných funkcí je derivace podílu dvou funkcí rozdílem mezi násobkem jmenovatele a derivace čitatele a násobkem čitatele a derivace jmenovatele, to celé děleno jmenovatelem na druhou.
\frac{\left(x^{1}+3\right)\times 9x^{1-1}-\left(9x^{1}-3\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
Derivace mnohočlenu je součtem derivací jeho členů. Derivace konstanty je 0. Derivace členu ax^{n} je nax^{n-1}.
\frac{\left(x^{1}+3\right)\times 9x^{0}-\left(9x^{1}-3\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Proveďte výpočet.
\frac{x^{1}\times 9x^{0}+3\times 9x^{0}-\left(9x^{1}x^{0}-3x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Proveďte roznásobení s využitím distributivnosti.
\frac{9x^{1}+3\times 9x^{0}-\left(9x^{1}-3x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Pokud chcete vynásobit mocniny stejného mocněnce, sečtěte jejich mocnitele.
\frac{9x^{1}+27x^{0}-\left(9x^{1}-3x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Proveďte výpočet.
\frac{9x^{1}+27x^{0}-9x^{1}-\left(-3x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Odstraňte nepotřebné závorky.
\frac{\left(9-9\right)x^{1}+\left(27-\left(-3\right)\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Slučte stejné členy.
\frac{30x^{0}}{\left(x^{1}+3\right)^{2}}
Odečtěte 9 z 9 a -3 ze 27.
\frac{30x^{0}}{\left(x+3\right)^{2}}
Pro všechny členy t, t^{1}=t.
\frac{30\times 1}{\left(x+3\right)^{2}}
Pro všechny členy t s výjimkou 0, t^{0}=1.
\frac{30}{\left(x+3\right)^{2}}
Pro všechny členy t, t\times 1=t a 1t=t.