Resoleu x
x=4
Gràfic
Compartir
Copiat al porta-retalls
\left(x-2\right)^{2}=\left(\sqrt{x}\right)^{2}
Eleveu els dos costats de l'equació al quadrat.
x^{2}-4x+4=\left(\sqrt{x}\right)^{2}
Utilitzeu el teorema del binomi \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per desenvolupar \left(x-2\right)^{2}.
x^{2}-4x+4=x
Calculeu \sqrt{x} elevat a 2 per obtenir x.
x^{2}-4x+4-x=0
Resteu x en tots dos costats.
x^{2}-5x+4=0
Combineu -4x i -x per obtenir -5x.
a+b=-5 ab=4
Per resoldre l'equació, el factor x^{2}-5x+4 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
-1,-4 -2,-2
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 4 de producte.
-1-4=-5 -2-2=-4
Calculeu la suma de cada parell.
a=-4 b=-1
La solució és la parella que atorga -5 de suma.
\left(x-4\right)\left(x-1\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
x=4 x=1
Per trobar solucions d'equació, resoleu x-4=0 i x-1=0.
4-2=\sqrt{4}
Substituïu 4 per x a l'equació x-2=\sqrt{x}.
2=2
Simplifiqueu. El valor x=4 satisfà l'equació.
1-2=\sqrt{1}
Substituïu 1 per x a l'equació x-2=\sqrt{x}.
-1=1
Simplifiqueu. El valor x=1 no satisfà l'equació perquè l'esquerra i el costat dret tenen signes oposats.
x=4
L'equació x-2=\sqrt{x} té una única solució.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}