Calcula
\frac{x^{4}+3x^{3}+1}{x+3}
Diferencieu x
\frac{3x^{4}+18x^{3}+27x^{2}-1}{\left(x+3\right)^{2}}
Gràfic
Compartir
Copiat al porta-retalls
\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x^{3} per \frac{x+3}{x+3}.
\frac{x^{3}\left(x+3\right)+1}{x+3}
Com que \frac{x^{3}\left(x+3\right)}{x+3} i \frac{1}{x+3} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{x^{4}+3x^{3}+1}{x+3}
Feu les multiplicacions a x^{3}\left(x+3\right)+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)}{x+3}+\frac{1}{x+3})
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x^{3} per \frac{x+3}{x+3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}\left(x+3\right)+1}{x+3})
Com que \frac{x^{3}\left(x+3\right)}{x+3} i \frac{1}{x+3} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{4}+3x^{3}+1}{x+3})
Feu les multiplicacions a x^{3}\left(x+3\right)+1.
\frac{\left(x^{1}+3\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+3x^{3}+1)-\left(x^{4}+3x^{3}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)}{\left(x^{1}+3\right)^{2}}
Per a dues funcions diferenciables qualssevol, la derivada del quocient de dues funcions és el denominador multiplicat per la derivada del numerador menys el numerador multiplicat per la derivada del denominador, i tot dividit pel denominador al quadrat.
\frac{\left(x^{1}+3\right)\left(4x^{4-1}+3\times 3x^{3-1}\right)-\left(x^{4}+3x^{3}+1\right)x^{1-1}}{\left(x^{1}+3\right)^{2}}
La derivada d'un polinomi és la suma de les derivades dels seus termes. La derivada d'un terme constant és 0. La derivada de ax^{n} és nax^{n-1}.
\frac{\left(x^{1}+3\right)\left(4x^{3}+9x^{2}\right)-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Simplifiqueu.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+1\right)x^{0}}{\left(x^{1}+3\right)^{2}}
Multipliqueu x^{1}+3 per 4x^{3}+9x^{2}.
\frac{x^{1}\times 4x^{3}+x^{1}\times 9x^{2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}x^{0}+3x^{3}x^{0}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Multipliqueu x^{4}+3x^{3}+1 per x^{0}.
\frac{4x^{1+3}+9x^{1+2}+3\times 4x^{3}+3\times 9x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Per multiplicar potències de la mateixa base, sumeu-ne els exponents.
\frac{4x^{4}+9x^{3}+12x^{3}+27x^{2}-\left(x^{4}+3x^{3}+x^{0}\right)}{\left(x^{1}+3\right)^{2}}
Simplifiqueu.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x^{1}+3\right)^{2}}
Combineu els termes iguals.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-x^{0}}{\left(x+3\right)^{2}}
Per a qualsevol terme t, t^{1}=t.
\frac{3x^{4}+6x^{3}+12x^{3}+27x^{2}-1}{\left(x+3\right)^{2}}
Per a qualsevol terme t excepte 0, t^{0}=1.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}