Resoleu x
x=3
x=5
Gràfic
Compartir
Copiat al porta-retalls
a+b=-8 ab=15
Per resoldre l'equació, el factor x^{2}-8x+15 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
-1,-15 -3,-5
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 15 de producte.
-1-15=-16 -3-5=-8
Calculeu la suma de cada parell.
a=-5 b=-3
La solució és la parella que atorga -8 de suma.
\left(x-5\right)\left(x-3\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
x=5 x=3
Per trobar solucions d'equació, resoleu x-5=0 i x-3=0.
a+b=-8 ab=1\times 15=15
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx+15. Per cercar a i b, configureu un sistema per resoldre.
-1,-15 -3,-5
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 15 de producte.
-1-15=-16 -3-5=-8
Calculeu la suma de cada parell.
a=-5 b=-3
La solució és la parella que atorga -8 de suma.
\left(x^{2}-5x\right)+\left(-3x+15\right)
Reescriviu x^{2}-8x+15 com a \left(x^{2}-5x\right)+\left(-3x+15\right).
x\left(x-5\right)-3\left(x-5\right)
x al primer grup i -3 al segon grup.
\left(x-5\right)\left(x-3\right)
Simplifiqueu el terme comú x-5 mitjançant la propietat distributiva.
x=5 x=3
Per trobar solucions d'equació, resoleu x-5=0 i x-3=0.
x^{2}-8x+15=0
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -8 per b i 15 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
Eleveu -8 al quadrat.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
Multipliqueu -4 per 15.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
Sumeu 64 i -60.
x=\frac{-\left(-8\right)±2}{2}
Calculeu l'arrel quadrada de 4.
x=\frac{8±2}{2}
El contrari de -8 és 8.
x=\frac{10}{2}
Ara resoleu l'equació x=\frac{8±2}{2} quan ± és més. Sumeu 8 i 2.
x=5
Dividiu 10 per 2.
x=\frac{6}{2}
Ara resoleu l'equació x=\frac{8±2}{2} quan ± és menys. Resteu 2 de 8.
x=3
Dividiu 6 per 2.
x=5 x=3
L'equació ja s'ha resolt.
x^{2}-8x+15=0
Les equacions quadràtiques com aquesta es poden resoldre calculant-ne el quadrat. Per fer-ho, primer l'equació ha de tenir la forma x^{2}+bx=c.
x^{2}-8x+15-15=-15
Resteu 15 als dos costats de l'equació.
x^{2}-8x=-15
En restar 15 a si mateix s'obté 0.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Dividiu -8, el coeficient del terme x, per 2 per obtenir -4. A continuació, sumeu el quadrat del nombre -4 als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}-8x+16=-15+16
Eleveu -4 al quadrat.
x^{2}-8x+16=1
Sumeu -15 i 16.
\left(x-4\right)^{2}=1
Factor x^{2}-8x+16. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-4=1 x-4=-1
Simplifiqueu.
x=5 x=3
Sumeu 4 als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}