Ves al contingut principal
Resoleu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

a+b=-2 ab=1
Per resoldre l'equació, el factor x^{2}-2x+1 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
a=-1 b=-1
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. L'únic parell d'aquest tipus és la solució del sistema.
\left(x-1\right)\left(x-1\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
\left(x-1\right)^{2}
Reescriviu com a quadrat del binomi.
x=1
Per trobar la solució de l'equació, resoleu x-1=0.
a+b=-2 ab=1\times 1=1
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx+1. Per cercar a i b, configureu un sistema per resoldre.
a=-1 b=-1
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. L'únic parell d'aquest tipus és la solució del sistema.
\left(x^{2}-x\right)+\left(-x+1\right)
Reescriviu x^{2}-2x+1 com a \left(x^{2}-x\right)+\left(-x+1\right).
x\left(x-1\right)-\left(x-1\right)
x al primer grup i -1 al segon grup.
\left(x-1\right)\left(x-1\right)
Simplifiqueu el terme comú x-1 mitjançant la propietat distributiva.
\left(x-1\right)^{2}
Reescriviu com a quadrat del binomi.
x=1
Per trobar la solució de l'equació, resoleu x-1=0.
x^{2}-2x+1=0
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -2 per b i 1 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2}
Eleveu -2 al quadrat.
x=\frac{-\left(-2\right)±\sqrt{0}}{2}
Sumeu 4 i -4.
x=-\frac{-2}{2}
Calculeu l'arrel quadrada de 0.
x=\frac{2}{2}
El contrari de -2 és 2.
x=1
Dividiu 2 per 2.
x^{2}-2x+1=0
Les equacions quadràtiques com aquesta es poden resoldre calculant-ne el quadrat. Per fer-ho, primer l'equació ha de tenir la forma x^{2}+bx=c.
\left(x-1\right)^{2}=0
Factor x^{2}-2x+1. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-1=0 x-1=0
Simplifiqueu.
x=1 x=1
Sumeu 1 als dos costats de l'equació.
x=1
L'equació ja s'ha resolt. Les solucions són les mateixes.