Resoleu x
x=4
x=6
Gràfic
Compartir
Copiat al porta-retalls
x^{2}-12x+19+2x=-5
Afegiu 2x als dos costats.
x^{2}-10x+19=-5
Combineu -12x i 2x per obtenir -10x.
x^{2}-10x+19+5=0
Afegiu 5 als dos costats.
x^{2}-10x+24=0
Sumeu 19 més 5 per obtenir 24.
a+b=-10 ab=24
Per resoldre l'equació, el factor x^{2}-10x+24 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
-1,-24 -2,-12 -3,-8 -4,-6
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 24 de producte.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculeu la suma de cada parell.
a=-6 b=-4
La solució és la parella que atorga -10 de suma.
\left(x-6\right)\left(x-4\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
x=6 x=4
Per trobar solucions d'equació, resoleu x-6=0 i x-4=0.
x^{2}-12x+19+2x=-5
Afegiu 2x als dos costats.
x^{2}-10x+19=-5
Combineu -12x i 2x per obtenir -10x.
x^{2}-10x+19+5=0
Afegiu 5 als dos costats.
x^{2}-10x+24=0
Sumeu 19 més 5 per obtenir 24.
a+b=-10 ab=1\times 24=24
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx+24. Per cercar a i b, configureu un sistema per resoldre.
-1,-24 -2,-12 -3,-8 -4,-6
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 24 de producte.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculeu la suma de cada parell.
a=-6 b=-4
La solució és la parella que atorga -10 de suma.
\left(x^{2}-6x\right)+\left(-4x+24\right)
Reescriviu x^{2}-10x+24 com a \left(x^{2}-6x\right)+\left(-4x+24\right).
x\left(x-6\right)-4\left(x-6\right)
x al primer grup i -4 al segon grup.
\left(x-6\right)\left(x-4\right)
Simplifiqueu el terme comú x-6 mitjançant la propietat distributiva.
x=6 x=4
Per trobar solucions d'equació, resoleu x-6=0 i x-4=0.
x^{2}-12x+19+2x=-5
Afegiu 2x als dos costats.
x^{2}-10x+19=-5
Combineu -12x i 2x per obtenir -10x.
x^{2}-10x+19+5=0
Afegiu 5 als dos costats.
x^{2}-10x+24=0
Sumeu 19 més 5 per obtenir 24.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 24}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -10 per b i 24 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 24}}{2}
Eleveu -10 al quadrat.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2}
Multipliqueu -4 per 24.
x=\frac{-\left(-10\right)±\sqrt{4}}{2}
Sumeu 100 i -96.
x=\frac{-\left(-10\right)±2}{2}
Calculeu l'arrel quadrada de 4.
x=\frac{10±2}{2}
El contrari de -10 és 10.
x=\frac{12}{2}
Ara resoleu l'equació x=\frac{10±2}{2} quan ± és més. Sumeu 10 i 2.
x=6
Dividiu 12 per 2.
x=\frac{8}{2}
Ara resoleu l'equació x=\frac{10±2}{2} quan ± és menys. Resteu 2 de 10.
x=4
Dividiu 8 per 2.
x=6 x=4
L'equació ja s'ha resolt.
x^{2}-12x+19+2x=-5
Afegiu 2x als dos costats.
x^{2}-10x+19=-5
Combineu -12x i 2x per obtenir -10x.
x^{2}-10x=-5-19
Resteu 19 en tots dos costats.
x^{2}-10x=-24
Resteu -5 de 19 per obtenir -24.
x^{2}-10x+\left(-5\right)^{2}=-24+\left(-5\right)^{2}
Dividiu -10, el coeficient del terme x, per 2 per obtenir -5. A continuació, sumeu el quadrat del nombre -5 als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}-10x+25=-24+25
Eleveu -5 al quadrat.
x^{2}-10x+25=1
Sumeu -24 i 25.
\left(x-5\right)^{2}=1
Factor x^{2}-10x+25. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{1}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-5=1 x-5=-1
Simplifiqueu.
x=6 x=4
Sumeu 5 als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}