Ves al contingut principal
Resoleu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

x^{2}-11x+28=0
Afegiu 28 als dos costats.
a+b=-11 ab=28
Per resoldre l'equació, el factor x^{2}-11x+28 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
-1,-28 -2,-14 -4,-7
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 28 de producte.
-1-28=-29 -2-14=-16 -4-7=-11
Calculeu la suma de cada parell.
a=-7 b=-4
La solució és la parella que atorga -11 de suma.
\left(x-7\right)\left(x-4\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
x=7 x=4
Per trobar solucions d'equació, resoleu x-7=0 i x-4=0.
x^{2}-11x+28=0
Afegiu 28 als dos costats.
a+b=-11 ab=1\times 28=28
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx+28. Per cercar a i b, configureu un sistema per resoldre.
-1,-28 -2,-14 -4,-7
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 28 de producte.
-1-28=-29 -2-14=-16 -4-7=-11
Calculeu la suma de cada parell.
a=-7 b=-4
La solució és la parella que atorga -11 de suma.
\left(x^{2}-7x\right)+\left(-4x+28\right)
Reescriviu x^{2}-11x+28 com a \left(x^{2}-7x\right)+\left(-4x+28\right).
x\left(x-7\right)-4\left(x-7\right)
Simplifiqueu x al primer grup i -4 al segon grup.
\left(x-7\right)\left(x-4\right)
Simplifiqueu el terme comú x-7 mitjançant la propietat distributiva.
x=7 x=4
Per trobar solucions d'equació, resoleu x-7=0 i x-4=0.
x^{2}-11x=-28
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x^{2}-11x-\left(-28\right)=-28-\left(-28\right)
Sumeu 28 als dos costats de l'equació.
x^{2}-11x-\left(-28\right)=0
En restar -28 a si mateix s'obté 0.
x^{2}-11x+28=0
Resteu -28 de 0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 28}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -11 per b i 28 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 28}}{2}
Eleveu -11 al quadrat.
x=\frac{-\left(-11\right)±\sqrt{121-112}}{2}
Multipliqueu -4 per 28.
x=\frac{-\left(-11\right)±\sqrt{9}}{2}
Sumeu 121 i -112.
x=\frac{-\left(-11\right)±3}{2}
Calculeu l'arrel quadrada de 9.
x=\frac{11±3}{2}
El contrari de -11 és 11.
x=\frac{14}{2}
Ara resoleu l'equació x=\frac{11±3}{2} quan ± és més. Sumeu 11 i 3.
x=7
Dividiu 14 per 2.
x=\frac{8}{2}
Ara resoleu l'equació x=\frac{11±3}{2} quan ± és menys. Resteu 3 de 11.
x=4
Dividiu 8 per 2.
x=7 x=4
L'equació ja s'ha resolt.
x^{2}-11x=-28
Les equacions quadràtiques com aquesta es poden resoldre calculant-ne el quadrat. Per fer-ho, primer l'equació ha de tenir la forma x^{2}+bx=c.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-28+\left(-\frac{11}{2}\right)^{2}
Dividiu -11, el coeficient del terme x, per 2 per obtenir -\frac{11}{2}. A continuació, sumeu el quadrat del nombre -\frac{11}{2} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}-11x+\frac{121}{4}=-28+\frac{121}{4}
Per elevar -\frac{11}{2} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
x^{2}-11x+\frac{121}{4}=\frac{9}{4}
Sumeu -28 i \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{9}{4}
Factoritzeu x^{2}-11x+\frac{121}{4}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot factoritzar com a \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-\frac{11}{2}=\frac{3}{2} x-\frac{11}{2}=-\frac{3}{2}
Simplifiqueu.
x=7 x=4
Sumeu \frac{11}{2} als dos costats de l'equació.