Ves al contingut principal
Resoleu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

x^{2}-25x=0
Resteu 25x en tots dos costats.
x\left(x-25\right)=0
Simplifiqueu x.
x=0 x=25
Per trobar solucions d'equació, resoleu x=0 i x-25=0.
x^{2}-25x=0
Resteu 25x en tots dos costats.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -25 per b i 0 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±25}{2}
Calculeu l'arrel quadrada de \left(-25\right)^{2}.
x=\frac{25±25}{2}
El contrari de -25 és 25.
x=\frac{50}{2}
Ara resoleu l'equació x=\frac{25±25}{2} quan ± és més. Sumeu 25 i 25.
x=25
Dividiu 50 per 2.
x=\frac{0}{2}
Ara resoleu l'equació x=\frac{25±25}{2} quan ± és menys. Resteu 25 de 25.
x=0
Dividiu 0 per 2.
x=25 x=0
L'equació ja s'ha resolt.
x^{2}-25x=0
Resteu 25x en tots dos costats.
x^{2}-25x+\left(-\frac{25}{2}\right)^{2}=\left(-\frac{25}{2}\right)^{2}
Dividiu -25, el coeficient del terme x, per 2 per obtenir -\frac{25}{2}. A continuació, sumeu el quadrat del nombre -\frac{25}{2} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}-25x+\frac{625}{4}=\frac{625}{4}
Per elevar -\frac{25}{2} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
\left(x-\frac{25}{2}\right)^{2}=\frac{625}{4}
Factor x^{2}-25x+\frac{625}{4}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{2}\right)^{2}}=\sqrt{\frac{625}{4}}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-\frac{25}{2}=\frac{25}{2} x-\frac{25}{2}=-\frac{25}{2}
Simplifiqueu.
x=25 x=0
Sumeu \frac{25}{2} als dos costats de l'equació.