Resoleu x
x=-1
x=12
Gràfic
Compartir
Copiat al porta-retalls
x^{2}-11x=12
Resteu 11x en tots dos costats.
x^{2}-11x-12=0
Resteu 12 en tots dos costats.
a+b=-11 ab=-12
Per resoldre l'equació, el factor x^{2}-11x-12 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
1,-12 2,-6 3,-4
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és negatiu, el número negatiu té un valor més absolut que el positiu. Llista de totes les parelles d'enters que donen -12 de producte.
1-12=-11 2-6=-4 3-4=-1
Calculeu la suma de cada parell.
a=-12 b=1
La solució és la parella que atorga -11 de suma.
\left(x-12\right)\left(x+1\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
x=12 x=-1
Per trobar solucions d'equació, resoleu x-12=0 i x+1=0.
x^{2}-11x=12
Resteu 11x en tots dos costats.
x^{2}-11x-12=0
Resteu 12 en tots dos costats.
a+b=-11 ab=1\left(-12\right)=-12
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx-12. Per cercar a i b, configureu un sistema per resoldre.
1,-12 2,-6 3,-4
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és negatiu, el número negatiu té un valor més absolut que el positiu. Llista de totes les parelles d'enters que donen -12 de producte.
1-12=-11 2-6=-4 3-4=-1
Calculeu la suma de cada parell.
a=-12 b=1
La solució és la parella que atorga -11 de suma.
\left(x^{2}-12x\right)+\left(x-12\right)
Reescriviu x^{2}-11x-12 com a \left(x^{2}-12x\right)+\left(x-12\right).
x\left(x-12\right)+x-12
Simplifiqueu x a x^{2}-12x.
\left(x-12\right)\left(x+1\right)
Simplifiqueu el terme comú x-12 mitjançant la propietat distributiva.
x=12 x=-1
Per trobar solucions d'equació, resoleu x-12=0 i x+1=0.
x^{2}-11x=12
Resteu 11x en tots dos costats.
x^{2}-11x-12=0
Resteu 12 en tots dos costats.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-12\right)}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -11 per b i -12 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-12\right)}}{2}
Eleveu -11 al quadrat.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2}
Multipliqueu -4 per -12.
x=\frac{-\left(-11\right)±\sqrt{169}}{2}
Sumeu 121 i 48.
x=\frac{-\left(-11\right)±13}{2}
Calculeu l'arrel quadrada de 169.
x=\frac{11±13}{2}
El contrari de -11 és 11.
x=\frac{24}{2}
Ara resoleu l'equació x=\frac{11±13}{2} quan ± és més. Sumeu 11 i 13.
x=12
Dividiu 24 per 2.
x=-\frac{2}{2}
Ara resoleu l'equació x=\frac{11±13}{2} quan ± és menys. Resteu 13 de 11.
x=-1
Dividiu -2 per 2.
x=12 x=-1
L'equació ja s'ha resolt.
x^{2}-11x=12
Resteu 11x en tots dos costats.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=12+\left(-\frac{11}{2}\right)^{2}
Dividiu -11, el coeficient del terme x, per 2 per obtenir -\frac{11}{2}. A continuació, sumeu el quadrat del nombre -\frac{11}{2} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}-11x+\frac{121}{4}=12+\frac{121}{4}
Per elevar -\frac{11}{2} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
x^{2}-11x+\frac{121}{4}=\frac{169}{4}
Sumeu 12 i \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{169}{4}
Factor x^{2}-11x+\frac{121}{4}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-\frac{11}{2}=\frac{13}{2} x-\frac{11}{2}=-\frac{13}{2}
Simplifiqueu.
x=12 x=-1
Sumeu \frac{11}{2} als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}