Resoleu x
x=-5
x=3
Gràfic
Compartir
Copiat al porta-retalls
x^{2}+2x-10-5=0
Resteu 5 en tots dos costats.
x^{2}+2x-15=0
Resteu -10 de 5 per obtenir -15.
a+b=2 ab=-15
Per resoldre l'equació, el factor x^{2}+2x-15 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
-1,15 -3,5
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és positiu, el número positiu té més valor absolut que el negatiu. Llista de totes les parelles d'enters que donen -15 de producte.
-1+15=14 -3+5=2
Calculeu la suma de cada parell.
a=-3 b=5
La solució és la parella que atorga 2 de suma.
\left(x-3\right)\left(x+5\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
x=3 x=-5
Per trobar solucions d'equació, resoleu x-3=0 i x+5=0.
x^{2}+2x-10-5=0
Resteu 5 en tots dos costats.
x^{2}+2x-15=0
Resteu -10 de 5 per obtenir -15.
a+b=2 ab=1\left(-15\right)=-15
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx-15. Per cercar a i b, configureu un sistema per resoldre.
-1,15 -3,5
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és positiu, el número positiu té més valor absolut que el negatiu. Llista de totes les parelles d'enters que donen -15 de producte.
-1+15=14 -3+5=2
Calculeu la suma de cada parell.
a=-3 b=5
La solució és la parella que atorga 2 de suma.
\left(x^{2}-3x\right)+\left(5x-15\right)
Reescriviu x^{2}+2x-15 com a \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
x al primer grup i 5 al segon grup.
\left(x-3\right)\left(x+5\right)
Simplifiqueu el terme comú x-3 mitjançant la propietat distributiva.
x=3 x=-5
Per trobar solucions d'equació, resoleu x-3=0 i x+5=0.
x^{2}+2x-10=5
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x^{2}+2x-10-5=5-5
Resteu 5 als dos costats de l'equació.
x^{2}+2x-10-5=0
En restar 5 a si mateix s'obté 0.
x^{2}+2x-15=0
Resteu 5 de -10.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, 2 per b i -15 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Eleveu 2 al quadrat.
x=\frac{-2±\sqrt{4+60}}{2}
Multipliqueu -4 per -15.
x=\frac{-2±\sqrt{64}}{2}
Sumeu 4 i 60.
x=\frac{-2±8}{2}
Calculeu l'arrel quadrada de 64.
x=\frac{6}{2}
Ara resoleu l'equació x=\frac{-2±8}{2} quan ± és més. Sumeu -2 i 8.
x=3
Dividiu 6 per 2.
x=-\frac{10}{2}
Ara resoleu l'equació x=\frac{-2±8}{2} quan ± és menys. Resteu 8 de -2.
x=-5
Dividiu -10 per 2.
x=3 x=-5
L'equació ja s'ha resolt.
x^{2}+2x-10=5
Les equacions quadràtiques com aquesta es poden resoldre calculant-ne el quadrat. Per fer-ho, primer l'equació ha de tenir la forma x^{2}+bx=c.
x^{2}+2x-10-\left(-10\right)=5-\left(-10\right)
Sumeu 10 als dos costats de l'equació.
x^{2}+2x=5-\left(-10\right)
En restar -10 a si mateix s'obté 0.
x^{2}+2x=15
Resteu -10 de 5.
x^{2}+2x+1^{2}=15+1^{2}
Dividiu 2, el coeficient del terme x, per 2 per obtenir 1. A continuació, sumeu el quadrat del nombre 1 als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}+2x+1=15+1
Eleveu 1 al quadrat.
x^{2}+2x+1=16
Sumeu 15 i 1.
\left(x+1\right)^{2}=16
Factor x^{2}+2x+1. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Calculeu l'arrel quadrada als dos costats de l'equació.
x+1=4 x+1=-4
Simplifiqueu.
x=3 x=-5
Resteu 1 als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}