Ves al contingut principal
Calcula
Tick mark Image
Expandiu
Tick mark Image

Problemes similars de la cerca web

Compartir

s\left(2-3i\right)+\frac{2\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\left(2-5i\right)
Multipliqueu el numerador i el denominador de \frac{2}{4-3i} pel conjugat complex del denominador, 4+3i.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{4^{2}-3^{2}i^{2}}\left(2-5i\right)
La multiplicació es pot transformar en una diferència de quadrats fent servir la regla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{25}\left(2-5i\right)
Per definició, i^{2} és -1. Calculeu el denominador.
s\left(2-3i\right)+\frac{2\times 4+2\times \left(3i\right)}{25}\left(2-5i\right)
Multipliqueu 2 per 4+3i.
s\left(2-3i\right)+\frac{8+6i}{25}\left(2-5i\right)
Feu les multiplicacions a 2\times 4+2\times \left(3i\right).
s\left(2-3i\right)+\left(\frac{8}{25}+\frac{6}{25}i\right)\left(2-5i\right)
Dividiu 8+6i entre 25 per obtenir \frac{8}{25}+\frac{6}{25}i.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)i^{2}
Multipliqueu els nombres complexos \frac{8}{25}+\frac{6}{25}i i 2-5i com es multipliquen els binomis.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right)
Per definició, i^{2} és -1.
s\left(2-3i\right)+\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}
Feu les multiplicacions a \frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right).
s\left(2-3i\right)+\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i
Combineu les parts reals i imaginàries a \frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}.
s\left(2-3i\right)+\left(\frac{46}{25}-\frac{28}{25}i\right)
Feu les addicions a \frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\left(2-5i\right)
Multipliqueu el numerador i el denominador de \frac{2}{4-3i} pel conjugat complex del denominador, 4+3i.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{4^{2}-3^{2}i^{2}}\left(2-5i\right)
La multiplicació es pot transformar en una diferència de quadrats fent servir la regla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
s\left(2-3i\right)+\frac{2\left(4+3i\right)}{25}\left(2-5i\right)
Per definició, i^{2} és -1. Calculeu el denominador.
s\left(2-3i\right)+\frac{2\times 4+2\times \left(3i\right)}{25}\left(2-5i\right)
Multipliqueu 2 per 4+3i.
s\left(2-3i\right)+\frac{8+6i}{25}\left(2-5i\right)
Feu les multiplicacions a 2\times 4+2\times \left(3i\right).
s\left(2-3i\right)+\left(\frac{8}{25}+\frac{6}{25}i\right)\left(2-5i\right)
Dividiu 8+6i entre 25 per obtenir \frac{8}{25}+\frac{6}{25}i.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)i^{2}
Multipliqueu els nombres complexos \frac{8}{25}+\frac{6}{25}i i 2-5i com es multipliquen els binomis.
s\left(2-3i\right)+\frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right)
Per definició, i^{2} és -1.
s\left(2-3i\right)+\frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}
Feu les multiplicacions a \frac{8}{25}\times 2+\frac{8}{25}\times \left(-5i\right)+\frac{6}{25}i\times 2+\frac{6}{25}\left(-5\right)\left(-1\right).
s\left(2-3i\right)+\frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i
Combineu les parts reals i imaginàries a \frac{16}{25}-\frac{8}{5}i+\frac{12}{25}i+\frac{6}{5}.
s\left(2-3i\right)+\left(\frac{46}{25}-\frac{28}{25}i\right)
Feu les addicions a \frac{16}{25}+\frac{6}{5}+\left(-\frac{8}{5}+\frac{12}{25}\right)i.