Ves al contingut principal
Resoleu x (complex solution)
Tick mark Image
Resoleu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Per teorema de l'arrel racional, totes les arrels racionals d'un polinomi són de la forma \frac{p}{q}, on p divideix el 729 terme constant i q divideix el coeficient principal 64. Llista de tots els candidats \frac{p}{q}.
x=-\frac{9}{4}
Per cercar una d'aquestes arrels, proveu tots els valors enters, començant pel més petit, per valor absolut. Si no es troba cap arrel d'enter, proveu les fraccions.
16x^{2}-36x+81=0
Per teorema de factors, x-k és un factor del polinomi per a cada k arrel. Dividiu 64x^{3}+729 entre 4\left(x+\frac{9}{4}\right)=4x+9 per obtenir 16x^{2}-36x+81. Resoleu l'equació on el resultat és igual a 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Totes les equacions amb el format ax^{2}+bx+c=0 es poden resoldre mitjançant la fórmula quadràtica: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substituïu 16 per a, -36 per b i 81 per c a la fórmula quadràtica.
x=\frac{36±\sqrt{-3888}}{32}
Feu els càlculs.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Resoleu l'equació 16x^{2}-36x+81=0 considerant que ± és el signe més i ± és el signe menys.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Llista de totes les solucions trobades.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Per teorema de l'arrel racional, totes les arrels racionals d'un polinomi són de la forma \frac{p}{q}, on p divideix el 729 terme constant i q divideix el coeficient principal 64. Llista de tots els candidats \frac{p}{q}.
x=-\frac{9}{4}
Per cercar una d'aquestes arrels, proveu tots els valors enters, començant pel més petit, per valor absolut. Si no es troba cap arrel d'enter, proveu les fraccions.
16x^{2}-36x+81=0
Per teorema de factors, x-k és un factor del polinomi per a cada k arrel. Dividiu 64x^{3}+729 entre 4\left(x+\frac{9}{4}\right)=4x+9 per obtenir 16x^{2}-36x+81. Resoleu l'equació on el resultat és igual a 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Totes les equacions amb el format ax^{2}+bx+c=0 es poden resoldre mitjançant la fórmula quadràtica: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substituïu 16 per a, -36 per b i 81 per c a la fórmula quadràtica.
x=\frac{36±\sqrt{-3888}}{32}
Feu els càlculs.
x\in \emptyset
Com que l'arrel quadrada d'un número negatiu no està definida al camp real, no hi ha cap solució.
x=-\frac{9}{4}
Llista de totes les solucions trobades.