Resoleu x
x=-15
x=0
Gràfic
Compartir
Copiat al porta-retalls
x\left(5x+75\right)=0
Simplifiqueu x.
x=0 x=-15
Per trobar solucions d'equació, resoleu x=0 i 5x+75=0.
5x^{2}+75x=0
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x=\frac{-75±\sqrt{75^{2}}}{2\times 5}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 5 per a, 75 per b i 0 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-75±75}{2\times 5}
Calculeu l'arrel quadrada de 75^{2}.
x=\frac{-75±75}{10}
Multipliqueu 2 per 5.
x=\frac{0}{10}
Ara resoleu l'equació x=\frac{-75±75}{10} quan ± és més. Sumeu -75 i 75.
x=0
Dividiu 0 per 10.
x=-\frac{150}{10}
Ara resoleu l'equació x=\frac{-75±75}{10} quan ± és menys. Resteu 75 de -75.
x=-15
Dividiu -150 per 10.
x=0 x=-15
L'equació ja s'ha resolt.
5x^{2}+75x=0
Les equacions quadràtiques com aquesta es poden resoldre calculant-ne el quadrat. Per fer-ho, primer l'equació ha de tenir la forma x^{2}+bx=c.
\frac{5x^{2}+75x}{5}=\frac{0}{5}
Dividiu els dos costats per 5.
x^{2}+\frac{75}{5}x=\frac{0}{5}
En dividir per 5 es desfà la multiplicació per 5.
x^{2}+15x=\frac{0}{5}
Dividiu 75 per 5.
x^{2}+15x=0
Dividiu 0 per 5.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=\left(\frac{15}{2}\right)^{2}
Dividiu 15, el coeficient del terme x, per 2 per obtenir \frac{15}{2}. A continuació, sumeu el quadrat del nombre \frac{15}{2} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}+15x+\frac{225}{4}=\frac{225}{4}
Per elevar \frac{15}{2} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
\left(x+\frac{15}{2}\right)^{2}=\frac{225}{4}
Factor x^{2}+15x+\frac{225}{4}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Calculeu l'arrel quadrada als dos costats de l'equació.
x+\frac{15}{2}=\frac{15}{2} x+\frac{15}{2}=-\frac{15}{2}
Simplifiqueu.
x=0 x=-15
Resteu \frac{15}{2} als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}