Resoleu p
p=7
p=0
Compartir
Copiat al porta-retalls
5p^{2}-35p=0
Resteu 35p en tots dos costats.
p\left(5p-35\right)=0
Simplifiqueu p.
p=0 p=7
Per trobar solucions d'equació, resoleu p=0 i 5p-35=0.
5p^{2}-35p=0
Resteu 35p en tots dos costats.
p=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}}}{2\times 5}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 5 per a, -35 per b i 0 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-35\right)±35}{2\times 5}
Calculeu l'arrel quadrada de \left(-35\right)^{2}.
p=\frac{35±35}{2\times 5}
El contrari de -35 és 35.
p=\frac{35±35}{10}
Multipliqueu 2 per 5.
p=\frac{70}{10}
Ara resoleu l'equació p=\frac{35±35}{10} quan ± és més. Sumeu 35 i 35.
p=7
Dividiu 70 per 10.
p=\frac{0}{10}
Ara resoleu l'equació p=\frac{35±35}{10} quan ± és menys. Resteu 35 de 35.
p=0
Dividiu 0 per 10.
p=7 p=0
L'equació ja s'ha resolt.
5p^{2}-35p=0
Resteu 35p en tots dos costats.
\frac{5p^{2}-35p}{5}=\frac{0}{5}
Dividiu els dos costats per 5.
p^{2}+\left(-\frac{35}{5}\right)p=\frac{0}{5}
En dividir per 5 es desfà la multiplicació per 5.
p^{2}-7p=\frac{0}{5}
Dividiu -35 per 5.
p^{2}-7p=0
Dividiu 0 per 5.
p^{2}-7p+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
Dividiu -7, el coeficient del terme x, per 2 per obtenir -\frac{7}{2}. A continuació, sumeu el quadrat del nombre -\frac{7}{2} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
p^{2}-7p+\frac{49}{4}=\frac{49}{4}
Per elevar -\frac{7}{2} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
\left(p-\frac{7}{2}\right)^{2}=\frac{49}{4}
Factor p^{2}-7p+\frac{49}{4}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Calculeu l'arrel quadrada als dos costats de l'equació.
p-\frac{7}{2}=\frac{7}{2} p-\frac{7}{2}=-\frac{7}{2}
Simplifiqueu.
p=7 p=0
Sumeu \frac{7}{2} als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}