Ves al contingut principal
Resoleu x (complex solution)
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

3x^{2}-5x+4=0
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\times 4}}{2\times 3}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 3 per a, -5 per b i 4 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\times 4}}{2\times 3}
Eleveu -5 al quadrat.
x=\frac{-\left(-5\right)±\sqrt{25-12\times 4}}{2\times 3}
Multipliqueu -4 per 3.
x=\frac{-\left(-5\right)±\sqrt{25-48}}{2\times 3}
Multipliqueu -12 per 4.
x=\frac{-\left(-5\right)±\sqrt{-23}}{2\times 3}
Sumeu 25 i -48.
x=\frac{-\left(-5\right)±\sqrt{23}i}{2\times 3}
Calculeu l'arrel quadrada de -23.
x=\frac{5±\sqrt{23}i}{2\times 3}
El contrari de -5 és 5.
x=\frac{5±\sqrt{23}i}{6}
Multipliqueu 2 per 3.
x=\frac{5+\sqrt{23}i}{6}
Ara resoleu l'equació x=\frac{5±\sqrt{23}i}{6} quan ± és més. Sumeu 5 i i\sqrt{23}.
x=\frac{-\sqrt{23}i+5}{6}
Ara resoleu l'equació x=\frac{5±\sqrt{23}i}{6} quan ± és menys. Resteu i\sqrt{23} de 5.
x=\frac{5+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+5}{6}
L'equació ja s'ha resolt.
3x^{2}-5x+4=0
Les equacions quadràtiques com aquesta es poden resoldre calculant-ne el quadrat. Per fer-ho, primer l'equació ha de tenir la forma x^{2}+bx=c.
3x^{2}-5x+4-4=-4
Resteu 4 als dos costats de l'equació.
3x^{2}-5x=-4
En restar 4 a si mateix s'obté 0.
\frac{3x^{2}-5x}{3}=-\frac{4}{3}
Dividiu els dos costats per 3.
x^{2}-\frac{5}{3}x=-\frac{4}{3}
En dividir per 3 es desfà la multiplicació per 3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{5}{6}\right)^{2}
Dividiu -\frac{5}{3}, el coeficient del terme x, per 2 per obtenir -\frac{5}{6}. A continuació, sumeu el quadrat del nombre -\frac{5}{6} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{4}{3}+\frac{25}{36}
Per elevar -\frac{5}{6} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{23}{36}
Sumeu -\frac{4}{3} i \frac{25}{36} trobant un denominador comú i sumant-ne els numeradors. A continuació, reduïu la fracció al màxim sempre que sigui possible.
\left(x-\frac{5}{6}\right)^{2}=-\frac{23}{36}
Factor x^{2}-\frac{5}{3}x+\frac{25}{36}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-\frac{5}{6}=\frac{\sqrt{23}i}{6} x-\frac{5}{6}=-\frac{\sqrt{23}i}{6}
Simplifiqueu.
x=\frac{5+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+5}{6}
Sumeu \frac{5}{6} als dos costats de l'equació.