Resoleu E
E=807222108073914493668601406132662514121377339805251439052009765863267823858655923885985457129157443000000000000000000000000000000000000000000000000000000000000000000f
s\neq 0
Resoleu f
f=\frac{E}{807222108073914493668601406132662514121377339805251439052009765863267823858655923885985457129157443000000000000000000000000000000000000000000000000000000000000000000}
s\neq 0
Compartir
Copiat al porta-retalls
3fs^{-2}=\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}Es^{-2}
Calculeu 310 elevat a -66 per obtenir \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}.
\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}Es^{-2}=3fs^{-2}
Intercanvieu els costats perquè tots els termes variables estiguin al costat esquerre.
\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}E=\frac{3f}{s^{2}}
L'equació té la forma estàndard.
\frac{\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}E\times 269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}{1}=\frac{3f}{s^{2}\times \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}}
Dividiu els dos costats per \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}s^{-2}.
E=\frac{3f}{s^{2}\times \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}}
En dividir per \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}s^{-2} es desfà la multiplicació per \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}s^{-2}.
E=807222108073914493668601406132662514121377339805251439052009765863267823858655923885985457129157443000000000000000000000000000000000000000000000000000000000000000000f
Dividiu \frac{3f}{s^{2}} per \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}s^{-2}.
3fs^{-2}=\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}Es^{-2}
Calculeu 310 elevat a -66 per obtenir \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}.
\frac{3}{s^{2}}f=\frac{E}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}
L'equació té la forma estàndard.
\frac{\frac{3}{s^{2}}fs^{2}}{3}=\frac{E}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}\times \frac{3}{s^{2}}}
Dividiu els dos costats per 3s^{-2}.
f=\frac{E}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}\times \frac{3}{s^{2}}}
En dividir per 3s^{-2} es desfà la multiplicació per 3s^{-2}.
f=\frac{E}{807222108073914493668601406132662514121377339805251439052009765863267823858655923885985457129157443000000000000000000000000000000000000000000000000000000000000000000}
Dividiu \frac{E}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}} per 3s^{-2}.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}