Ves al contingut principal
Resoleu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

a+b=-3 ab=2\left(-5\right)=-10
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a 2x^{2}+ax+bx-5. Per cercar a i b, configureu un sistema per resoldre.
1,-10 2,-5
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és negatiu, el número negatiu té un valor més absolut que el positiu. Llista de totes les parelles d'enters que donen -10 de producte.
1-10=-9 2-5=-3
Calculeu la suma de cada parell.
a=-5 b=2
La solució és la parella que atorga -3 de suma.
\left(2x^{2}-5x\right)+\left(2x-5\right)
Reescriviu 2x^{2}-3x-5 com a \left(2x^{2}-5x\right)+\left(2x-5\right).
x\left(2x-5\right)+2x-5
Simplifiqueu x a 2x^{2}-5x.
\left(2x-5\right)\left(x+1\right)
Simplifiqueu el terme comú 2x-5 mitjançant la propietat distributiva.
x=\frac{5}{2} x=-1
Per trobar solucions d'equació, resoleu 2x-5=0 i x+1=0.
2x^{2}-3x-5=0
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 2 per a, -3 per b i -5 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Eleveu -3 al quadrat.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
Multipliqueu -4 per 2.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
Multipliqueu -8 per -5.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
Sumeu 9 i 40.
x=\frac{-\left(-3\right)±7}{2\times 2}
Calculeu l'arrel quadrada de 49.
x=\frac{3±7}{2\times 2}
El contrari de -3 és 3.
x=\frac{3±7}{4}
Multipliqueu 2 per 2.
x=\frac{10}{4}
Ara resoleu l'equació x=\frac{3±7}{4} quan ± és més. Sumeu 3 i 7.
x=\frac{5}{2}
Redueix la fracció \frac{10}{4} al màxim extraient i anul·lant 2.
x=-\frac{4}{4}
Ara resoleu l'equació x=\frac{3±7}{4} quan ± és menys. Resteu 7 de 3.
x=-1
Dividiu -4 per 4.
x=\frac{5}{2} x=-1
L'equació ja s'ha resolt.
2x^{2}-3x-5=0
Les equacions quadràtiques com aquesta es poden resoldre calculant-ne el quadrat. Per fer-ho, primer l'equació ha de tenir la forma x^{2}+bx=c.
2x^{2}-3x-5-\left(-5\right)=-\left(-5\right)
Sumeu 5 als dos costats de l'equació.
2x^{2}-3x=-\left(-5\right)
En restar -5 a si mateix s'obté 0.
2x^{2}-3x=5
Resteu -5 de 0.
\frac{2x^{2}-3x}{2}=\frac{5}{2}
Dividiu els dos costats per 2.
x^{2}-\frac{3}{2}x=\frac{5}{2}
En dividir per 2 es desfà la multiplicació per 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
Dividiu -\frac{3}{2}, el coeficient del terme x, per 2 per obtenir -\frac{3}{4}. A continuació, sumeu el quadrat del nombre -\frac{3}{4} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Per elevar -\frac{3}{4} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Sumeu \frac{5}{2} i \frac{9}{16} trobant un denominador comú i sumant-ne els numeradors. A continuació, reduïu la fracció al màxim sempre que sigui possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-\frac{3}{4}=\frac{7}{4} x-\frac{3}{4}=-\frac{7}{4}
Simplifiqueu.
x=\frac{5}{2} x=-1
Sumeu \frac{3}{4} als dos costats de l'equació.