Ves al contingut principal
Resoleu m
Tick mark Image

Problemes similars de la cerca web

Compartir

18m^{2}=-900
Resteu 900 en tots dos costats. Qualsevol valor restat a zero dóna com a resultat la seva negació.
m^{2}=\frac{-900}{18}
Dividiu els dos costats per 18.
m^{2}=-50
Dividiu -900 entre 18 per obtenir -50.
m=5\sqrt{2}i m=-5\sqrt{2}i
L'equació ja s'ha resolt.
18m^{2}+900=0
Les equacions quadràtiques com aquesta, amb un terme x^{2} però cap terme x, es poden resoldre utilitzant la fórmula quadràtica, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, una vegada que s'hagin posat en forma estàndard: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\times 18\times 900}}{2\times 18}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 18 per a, 0 per b i 900 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\times 18\times 900}}{2\times 18}
Eleveu 0 al quadrat.
m=\frac{0±\sqrt{-72\times 900}}{2\times 18}
Multipliqueu -4 per 18.
m=\frac{0±\sqrt{-64800}}{2\times 18}
Multipliqueu -72 per 900.
m=\frac{0±180\sqrt{2}i}{2\times 18}
Calculeu l'arrel quadrada de -64800.
m=\frac{0±180\sqrt{2}i}{36}
Multipliqueu 2 per 18.
m=5\sqrt{2}i
Ara resoleu l'equació m=\frac{0±180\sqrt{2}i}{36} quan ± és més.
m=-5\sqrt{2}i
Ara resoleu l'equació m=\frac{0±180\sqrt{2}i}{36} quan ± és menys.
m=5\sqrt{2}i m=-5\sqrt{2}i
L'equació ja s'ha resolt.