Ves al contingut principal
Calcula
Tick mark Image
Diferencieu t
Tick mark Image

Problemes similars de la cerca web

Compartir

\frac{1}{1000000}\times 3^{-7}\times 625t^{-4}
Calculeu 10 elevat a -6 per obtenir \frac{1}{1000000}.
\frac{1}{1000000}\times \frac{1}{2187}\times 625t^{-4}
Calculeu 3 elevat a -7 per obtenir \frac{1}{2187}.
\frac{1}{2187000000}\times 625t^{-4}
Multipliqueu \frac{1}{1000000} per \frac{1}{2187} per obtenir \frac{1}{2187000000}.
\frac{1}{3499200}t^{-4}
Multipliqueu \frac{1}{2187000000} per 625 per obtenir \frac{1}{3499200}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{1000000}\times 3^{-7}\times 625t^{-4})
Calculeu 10 elevat a -6 per obtenir \frac{1}{1000000}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{1000000}\times \frac{1}{2187}\times 625t^{-4})
Calculeu 3 elevat a -7 per obtenir \frac{1}{2187}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{2187000000}\times 625t^{-4})
Multipliqueu \frac{1}{1000000} per \frac{1}{2187} per obtenir \frac{1}{2187000000}.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{3499200}t^{-4})
Multipliqueu \frac{1}{2187000000} per 625 per obtenir \frac{1}{3499200}.
-4\times \frac{1}{3499200}t^{-4-1}
La derivada de ax^{n} és nax^{n-1}.
-\frac{1}{874800}t^{-4-1}
Multipliqueu -4 per \frac{1}{3499200}.
-\frac{1}{874800}t^{-5}
Resteu 1 de -4.