Resoleu x
x=\frac{3\sqrt{17}-11}{2}\approx 0,684658438
x=\frac{-3\sqrt{17}-11}{2}\approx -11,684658438
Gràfic
Compartir
Copiat al porta-retalls
x^{2}+11x-8=0
Intercanvieu els costats perquè tots els termes variables estiguin al costat esquerre.
x=\frac{-11±\sqrt{11^{2}-4\left(-8\right)}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, 11 per b i -8 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-8\right)}}{2}
Eleveu 11 al quadrat.
x=\frac{-11±\sqrt{121+32}}{2}
Multipliqueu -4 per -8.
x=\frac{-11±\sqrt{153}}{2}
Sumeu 121 i 32.
x=\frac{-11±3\sqrt{17}}{2}
Calculeu l'arrel quadrada de 153.
x=\frac{3\sqrt{17}-11}{2}
Ara resoleu l'equació x=\frac{-11±3\sqrt{17}}{2} quan ± és més. Sumeu -11 i 3\sqrt{17}.
x=\frac{-3\sqrt{17}-11}{2}
Ara resoleu l'equació x=\frac{-11±3\sqrt{17}}{2} quan ± és menys. Resteu 3\sqrt{17} de -11.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
L'equació ja s'ha resolt.
x^{2}+11x-8=0
Intercanvieu els costats perquè tots els termes variables estiguin al costat esquerre.
x^{2}+11x=8
Afegiu 8 als dos costats. Qualsevol valor més zero dóna com a resultat el mateix valor.
x^{2}+11x+\left(\frac{11}{2}\right)^{2}=8+\left(\frac{11}{2}\right)^{2}
Dividiu 11, el coeficient del terme x, per 2 per obtenir \frac{11}{2}. A continuació, sumeu el quadrat del nombre \frac{11}{2} als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}+11x+\frac{121}{4}=8+\frac{121}{4}
Per elevar \frac{11}{2} al quadrat, eleveu al quadrat el numerador i el denominador de la fracció.
x^{2}+11x+\frac{121}{4}=\frac{153}{4}
Sumeu 8 i \frac{121}{4}.
\left(x+\frac{11}{2}\right)^{2}=\frac{153}{4}
Factor x^{2}+11x+\frac{121}{4}. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
Calculeu l'arrel quadrada als dos costats de l'equació.
x+\frac{11}{2}=\frac{3\sqrt{17}}{2} x+\frac{11}{2}=-\frac{3\sqrt{17}}{2}
Simplifiqueu.
x=\frac{3\sqrt{17}-11}{2} x=\frac{-3\sqrt{17}-11}{2}
Resteu \frac{11}{2} als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}