Ves al contingut principal
Calcula
Tick mark Image
Diferencieu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}}
Multipliqueu x per x per obtenir x^{2}.
-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Calculeu 10 elevat a -11 per obtenir \frac{1}{100000000000}.
-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Multipliqueu -667 per \frac{1}{100000000000} per obtenir -\frac{667}{100000000000}.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}}
Anul·leu 3 tant al numerador com al denominador.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000}
Calculeu 10 elevat a 8 per obtenir 100000000.
-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000}
Multipliqueu 5 per 100000000 per obtenir 500000000.
-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2}
Dividiu 6x^{2} entre 500000000 per obtenir \frac{3}{250000000}x^{2}.
-\frac{2001}{25000000000000000000}x^{2}
Multipliqueu -\frac{667}{100000000000} per \frac{3}{250000000} per obtenir -\frac{2001}{25000000000000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}})
Multipliqueu x per x per obtenir x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Calculeu 10 elevat a -11 per obtenir \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Multipliqueu -667 per \frac{1}{100000000000} per obtenir -\frac{667}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}})
Anul·leu 3 tant al numerador com al denominador.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000})
Calculeu 10 elevat a 8 per obtenir 100000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000})
Multipliqueu 5 per 100000000 per obtenir 500000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2})
Dividiu 6x^{2} entre 500000000 per obtenir \frac{3}{250000000}x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2001}{25000000000000000000}x^{2})
Multipliqueu -\frac{667}{100000000000} per \frac{3}{250000000} per obtenir -\frac{2001}{25000000000000000000}.
2\left(-\frac{2001}{25000000000000000000}\right)x^{2-1}
La derivada de ax^{n} és nax^{n-1}.
-\frac{2001}{12500000000000000000}x^{2-1}
Multipliqueu 2 per -\frac{2001}{25000000000000000000}.
-\frac{2001}{12500000000000000000}x^{1}
Resteu 1 de 2.
-\frac{2001}{12500000000000000000}x
Per a qualsevol terme t, t^{1}=t.