Factoritzar
\frac{\left(1-x\right)\left(x+3\right)}{2}
Calcula
\frac{\left(1-x\right)\left(x+3\right)}{2}
Gràfic
Compartir
Copiat al porta-retalls
\frac{-x^{2}-2x+3}{2}
Simplifiqueu \frac{1}{2}.
a+b=-2 ab=-3=-3
Considereu -x^{2}-2x+3. Factoritzeu l'expressió per agrupació. En primer lloc, cal reescriure l'expressió com a -x^{2}+ax+bx+3. Per cercar a i b, configureu un sistema per resoldre.
a=1 b=-3
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és negatiu, el número negatiu té un valor més absolut que el positiu. L'únic parell d'aquest tipus és la solució del sistema.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Reescriviu -x^{2}-2x+3 com a \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
x al primer grup i 3 al segon grup.
\left(-x+1\right)\left(x+3\right)
Simplifiqueu el terme comú -x+1 mitjançant la propietat distributiva.
\frac{\left(-x+1\right)\left(x+3\right)}{2}
Reescriviu l'expressió factoritzada completa.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}