Resoleu y
y=3
y=-7
Gràfic
Compartir
Copiat al porta-retalls
y^{2}+4y+4=25
Utilitzeu el teorema del binomi \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per desenvolupar \left(y+2\right)^{2}.
y^{2}+4y+4-25=0
Resteu 25 en tots dos costats.
y^{2}+4y-21=0
Resteu 4 de 25 per obtenir -21.
a+b=4 ab=-21
Per resoldre l'equació, el factor y^{2}+4y-21 amb la fórmula y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). Per cercar a i b, configureu un sistema per resoldre.
-1,21 -3,7
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és positiu, el número positiu té més valor absolut que el negatiu. Llista de totes les parelles d'enters que donen -21 de producte.
-1+21=20 -3+7=4
Calculeu la suma de cada parell.
a=-3 b=7
La solució és la parella que atorga 4 de suma.
\left(y-3\right)\left(y+7\right)
Torna a escriure l'expressió factoritada \left(y+a\right)\left(y+b\right) fent servir els valors obtinguts.
y=3 y=-7
Per trobar solucions d'equació, resoleu y-3=0 i y+7=0.
y^{2}+4y+4=25
Utilitzeu el teorema del binomi \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per desenvolupar \left(y+2\right)^{2}.
y^{2}+4y+4-25=0
Resteu 25 en tots dos costats.
y^{2}+4y-21=0
Resteu 4 de 25 per obtenir -21.
a+b=4 ab=1\left(-21\right)=-21
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a y^{2}+ay+by-21. Per cercar a i b, configureu un sistema per resoldre.
-1,21 -3,7
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és positiu, el número positiu té més valor absolut que el negatiu. Llista de totes les parelles d'enters que donen -21 de producte.
-1+21=20 -3+7=4
Calculeu la suma de cada parell.
a=-3 b=7
La solució és la parella que atorga 4 de suma.
\left(y^{2}-3y\right)+\left(7y-21\right)
Reescriviu y^{2}+4y-21 com a \left(y^{2}-3y\right)+\left(7y-21\right).
y\left(y-3\right)+7\left(y-3\right)
y al primer grup i 7 al segon grup.
\left(y-3\right)\left(y+7\right)
Simplifiqueu el terme comú y-3 mitjançant la propietat distributiva.
y=3 y=-7
Per trobar solucions d'equació, resoleu y-3=0 i y+7=0.
y^{2}+4y+4=25
Utilitzeu el teorema del binomi \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per desenvolupar \left(y+2\right)^{2}.
y^{2}+4y+4-25=0
Resteu 25 en tots dos costats.
y^{2}+4y-21=0
Resteu 4 de 25 per obtenir -21.
y=\frac{-4±\sqrt{4^{2}-4\left(-21\right)}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, 4 per b i -21 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-4±\sqrt{16-4\left(-21\right)}}{2}
Eleveu 4 al quadrat.
y=\frac{-4±\sqrt{16+84}}{2}
Multipliqueu -4 per -21.
y=\frac{-4±\sqrt{100}}{2}
Sumeu 16 i 84.
y=\frac{-4±10}{2}
Calculeu l'arrel quadrada de 100.
y=\frac{6}{2}
Ara resoleu l'equació y=\frac{-4±10}{2} quan ± és més. Sumeu -4 i 10.
y=3
Dividiu 6 per 2.
y=-\frac{14}{2}
Ara resoleu l'equació y=\frac{-4±10}{2} quan ± és menys. Resteu 10 de -4.
y=-7
Dividiu -14 per 2.
y=3 y=-7
L'equació ja s'ha resolt.
\sqrt{\left(y+2\right)^{2}}=\sqrt{25}
Calculeu l'arrel quadrada als dos costats de l'equació.
y+2=5 y+2=-5
Simplifiqueu.
y=3 y=-7
Resteu 2 als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}