Ves al contingut principal
Resoleu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

x^{2}-8x+16=0
Utilitzeu el teorema del binomi \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per desenvolupar \left(x-4\right)^{2}.
a+b=-8 ab=16
Per resoldre l'equació, el factor x^{2}-8x+16 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
-1,-16 -2,-8 -4,-4
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 16 de producte.
-1-16=-17 -2-8=-10 -4-4=-8
Calculeu la suma de cada parell.
a=-4 b=-4
La solució és la parella que atorga -8 de suma.
\left(x-4\right)\left(x-4\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
\left(x-4\right)^{2}
Reescriviu com a quadrat del binomi.
x=4
Per trobar la solució de l'equació, resoleu x-4=0.
x^{2}-8x+16=0
Utilitzeu el teorema del binomi \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per desenvolupar \left(x-4\right)^{2}.
a+b=-8 ab=1\times 16=16
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx+16. Per cercar a i b, configureu un sistema per resoldre.
-1,-16 -2,-8 -4,-4
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 16 de producte.
-1-16=-17 -2-8=-10 -4-4=-8
Calculeu la suma de cada parell.
a=-4 b=-4
La solució és la parella que atorga -8 de suma.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Reescriviu x^{2}-8x+16 com a \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
x al primer grup i -4 al segon grup.
\left(x-4\right)\left(x-4\right)
Simplifiqueu el terme comú x-4 mitjançant la propietat distributiva.
\left(x-4\right)^{2}
Reescriviu com a quadrat del binomi.
x=4
Per trobar la solució de l'equació, resoleu x-4=0.
x^{2}-8x+16=0
Utilitzeu el teorema del binomi \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per desenvolupar \left(x-4\right)^{2}.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -8 per b i 16 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Eleveu -8 al quadrat.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Multipliqueu -4 per 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Sumeu 64 i -64.
x=-\frac{-8}{2}
Calculeu l'arrel quadrada de 0.
x=\frac{8}{2}
El contrari de -8 és 8.
x=4
Dividiu 8 per 2.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-4=0 x-4=0
Simplifiqueu.
x=4 x=4
Sumeu 4 als dos costats de l'equació.
x=4
L'equació ja s'ha resolt. Les solucions són les mateixes.