Ves al contingut principal
Resoleu x
Tick mark Image
Resoleu x (complex solution)
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

5^{x+5}=\frac{1}{25}
Intercanvieu els costats perquè tots els termes variables estiguin al costat esquerre.
\log(5^{x+5})=\log(\frac{1}{25})
Calculeu el logaritme dels dos costats de l'equació.
\left(x+5\right)\log(5)=\log(\frac{1}{25})
El logaritme d'un nombre elevat a una potència és la potència multiplicada pel logaritme del nombre.
x+5=\frac{\log(\frac{1}{25})}{\log(5)}
Dividiu els dos costats per \log(5).
x+5=\log_{5}\left(\frac{1}{25}\right)
Per la fórmula de canvi de base \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-2-5
Resteu 5 als dos costats de l'equació.