Calcula
-\frac{2}{x^{2}}
Expandiu
-\frac{2}{x^{2}}
Gràfic
Compartir
Copiat al porta-retalls
\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de 1-x i 1+x és \left(x+1\right)\left(-x+1\right). Multipliqueu \frac{1}{1-x} per \frac{x+1}{x+1}. Multipliqueu \frac{1}{1+x} per \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Com que \frac{x+1}{\left(x+1\right)\left(-x+1\right)} i \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Feu les multiplicacions a x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Combineu els termes similars de x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Aïlleu la x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x per \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Com que \frac{x}{\left(x-1\right)\left(x+1\right)} i \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Feu les multiplicacions a x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Combineu els termes similars de x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Dividiu \frac{2x}{\left(x+1\right)\left(-x+1\right)} per \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} multiplicant \frac{2x}{\left(x+1\right)\left(-x+1\right)} pel recíproc de \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Extraieu el signe negatiu de x-1.
\frac{-2}{x^{2}}
Anul·leu x\left(x+1\right)\left(-x+1\right) tant al numerador com al denominador.
\frac{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de 1-x i 1+x és \left(x+1\right)\left(-x+1\right). Multipliqueu \frac{1}{1-x} per \frac{x+1}{x+1}. Multipliqueu \frac{1}{1+x} per \frac{-x+1}{-x+1}.
\frac{\frac{x+1-\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Com que \frac{x+1}{\left(x+1\right)\left(-x+1\right)} i \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{\frac{x+1+x-1}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Feu les multiplicacions a x+1-\left(-x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{x^{2}-1}+x}
Combineu els termes similars de x+1+x-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+x}
Aïlleu la x^{2}-1.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x per \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Com que \frac{x}{\left(x-1\right)\left(x+1\right)} i \frac{x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x+x^{3}+x^{2}-x^{2}-x}{\left(x-1\right)\left(x+1\right)}}
Feu les multiplicacions a x+x\left(x-1\right)\left(x+1\right).
\frac{\frac{2x}{\left(x+1\right)\left(-x+1\right)}}{\frac{x^{3}}{\left(x-1\right)\left(x+1\right)}}
Combineu els termes similars de x+x^{3}+x^{2}-x^{2}-x.
\frac{2x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Dividiu \frac{2x}{\left(x+1\right)\left(-x+1\right)} per \frac{x^{3}}{\left(x-1\right)\left(x+1\right)} multiplicant \frac{2x}{\left(x+1\right)\left(-x+1\right)} pel recíproc de \frac{x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-2x\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)x^{3}}
Extraieu el signe negatiu de x-1.
\frac{-2}{x^{2}}
Anul·leu x\left(x+1\right)\left(-x+1\right) tant al numerador com al denominador.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}