Resoleu x
x=-1
x=11
Gràfic
Compartir
Copiat al porta-retalls
a+b=-10 ab=-11
Per resoldre l'equació, el factor x^{2}-10x-11 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
a=-11 b=1
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és negatiu, el número negatiu té un valor més absolut que el positiu. L'únic parell d'aquest tipus és la solució del sistema.
\left(x-11\right)\left(x+1\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
x=11 x=-1
Per trobar solucions d'equació, resoleu x-11=0 i x+1=0.
a+b=-10 ab=1\left(-11\right)=-11
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx-11. Per cercar a i b, configureu un sistema per resoldre.
a=-11 b=1
Com que ab és negatiu, a i b tenen els signes oposats. Com que a+b és negatiu, el número negatiu té un valor més absolut que el positiu. L'únic parell d'aquest tipus és la solució del sistema.
\left(x^{2}-11x\right)+\left(x-11\right)
Reescriviu x^{2}-10x-11 com a \left(x^{2}-11x\right)+\left(x-11\right).
x\left(x-11\right)+x-11
Simplifiqueu x a x^{2}-11x.
\left(x-11\right)\left(x+1\right)
Simplifiqueu el terme comú x-11 mitjançant la propietat distributiva.
x=11 x=-1
Per trobar solucions d'equació, resoleu x-11=0 i x+1=0.
x^{2}-10x-11=0
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-11\right)}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -10 per b i -11 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-11\right)}}{2}
Eleveu -10 al quadrat.
x=\frac{-\left(-10\right)±\sqrt{100+44}}{2}
Multipliqueu -4 per -11.
x=\frac{-\left(-10\right)±\sqrt{144}}{2}
Sumeu 100 i 44.
x=\frac{-\left(-10\right)±12}{2}
Calculeu l'arrel quadrada de 144.
x=\frac{10±12}{2}
El contrari de -10 és 10.
x=\frac{22}{2}
Ara resoleu l'equació x=\frac{10±12}{2} quan ± és més. Sumeu 10 i 12.
x=11
Dividiu 22 per 2.
x=-\frac{2}{2}
Ara resoleu l'equació x=\frac{10±12}{2} quan ± és menys. Resteu 12 de 10.
x=-1
Dividiu -2 per 2.
x=11 x=-1
L'equació ja s'ha resolt.
x^{2}-10x-11=0
Les equacions quadràtiques com aquesta es poden resoldre calculant-ne el quadrat. Per fer-ho, primer l'equació ha de tenir la forma x^{2}+bx=c.
x^{2}-10x-11-\left(-11\right)=-\left(-11\right)
Sumeu 11 als dos costats de l'equació.
x^{2}-10x=-\left(-11\right)
En restar -11 a si mateix s'obté 0.
x^{2}-10x=11
Resteu -11 de 0.
x^{2}-10x+\left(-5\right)^{2}=11+\left(-5\right)^{2}
Dividiu -10, el coeficient del terme x, per 2 per obtenir -5. A continuació, sumeu el quadrat del nombre -5 als dos costats de l'equació. Aquest pas fa que el costat esquerre de l'equació sigui un quadrat perfecte.
x^{2}-10x+25=11+25
Eleveu -5 al quadrat.
x^{2}-10x+25=36
Sumeu 11 i 25.
\left(x-5\right)^{2}=36
Factor x^{2}-10x+25. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{36}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-5=6 x-5=-6
Simplifiqueu.
x=11 x=-1
Sumeu 5 als dos costats de l'equació.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}