Resoleu x
x=-7
Gràfic
Compartir
Copiat al porta-retalls
a+b=14 ab=49
Per resoldre l'equació, el factor x^{2}+14x+49 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
1,49 7,7
Com que ab és positiu, a i b tenen el mateix inici de sessió. Atès que a+b és positiu, a i b són positius. Llista de totes les parelles d'enters que donen 49 de producte.
1+49=50 7+7=14
Calculeu la suma de cada parell.
a=7 b=7
La solució és la parella que atorga 14 de suma.
\left(x+7\right)\left(x+7\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
\left(x+7\right)^{2}
Reescriviu com a quadrat del binomi.
x=-7
Per trobar la solució de l'equació, resoleu x+7=0.
a+b=14 ab=1\times 49=49
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx+49. Per cercar a i b, configureu un sistema per resoldre.
1,49 7,7
Com que ab és positiu, a i b tenen el mateix inici de sessió. Atès que a+b és positiu, a i b són positius. Llista de totes les parelles d'enters que donen 49 de producte.
1+49=50 7+7=14
Calculeu la suma de cada parell.
a=7 b=7
La solució és la parella que atorga 14 de suma.
\left(x^{2}+7x\right)+\left(7x+49\right)
Reescriviu x^{2}+14x+49 com a \left(x^{2}+7x\right)+\left(7x+49\right).
x\left(x+7\right)+7\left(x+7\right)
x al primer grup i 7 al segon grup.
\left(x+7\right)\left(x+7\right)
Simplifiqueu el terme comú x+7 mitjançant la propietat distributiva.
\left(x+7\right)^{2}
Reescriviu com a quadrat del binomi.
x=-7
Per trobar la solució de l'equació, resoleu x+7=0.
x^{2}+14x+49=0
Totes les equacions amb la fórmula ax^{2}+bx+c=0 es poden resoldre utilitzant la fórmula quadràtica següent: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula quadràtica ofereix dues solucions: una quan ± és una suma i una altra quan és una resta.
x=\frac{-14±\sqrt{14^{2}-4\times 49}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, 14 per b i 49 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 49}}{2}
Eleveu 14 al quadrat.
x=\frac{-14±\sqrt{196-196}}{2}
Multipliqueu -4 per 49.
x=\frac{-14±\sqrt{0}}{2}
Sumeu 196 i -196.
x=-\frac{14}{2}
Calculeu l'arrel quadrada de 0.
x=-7
Dividiu -14 per 2.
\left(x+7\right)^{2}=0
Factor x^{2}+14x+49. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{0}
Calculeu l'arrel quadrada als dos costats de l'equació.
x+7=0 x+7=0
Simplifiqueu.
x=-7 x=-7
Resteu 7 als dos costats de l'equació.
x=-7
L'equació ja s'ha resolt. Les solucions són les mateixes.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}