Calcula
\frac{1}{10000000}=0,0000001
Factoritzar
\frac{1}{2 ^ {7} \cdot 5 ^ {7}} = 1 \times 10^{-7}
Compartir
Copiat al porta-retalls
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(10^{-1236}\times 0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Calculeu 10 elevat a -72 per obtenir \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\times 0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Calculeu 10 elevat a -1236 per obtenir \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0\times 0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Multipliqueu \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000} per 0 per obtenir 0.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0\times 5+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Multipliqueu 0 per 0 per obtenir 0.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0+10^{-14}\right)}{10^{-72}+0\times 0\times 5}}
Multipliqueu 0 per 5 per obtenir 0.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\left(0+\frac{1}{100000000000000}\right)}{10^{-72}+0\times 0\times 5}}
Calculeu 10 elevat a -14 per obtenir \frac{1}{100000000000000}.
\sqrt{\frac{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}\times \frac{1}{100000000000000}}{10^{-72}+0\times 0\times 5}}
Sumeu 0 més \frac{1}{100000000000000} per obtenir \frac{1}{100000000000000}.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{10^{-72}+0\times 0\times 5}}
Multipliqueu \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} per \frac{1}{100000000000000} per obtenir \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0\times 0\times 5}}
Calculeu 10 elevat a -72 per obtenir \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0\times 5}}
Multipliqueu 0 per 0 per obtenir 0.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}+0}}
Multipliqueu 0 per 5 per obtenir 0.
\sqrt{\frac{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}}{\frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}}}
Sumeu \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} més 0 per obtenir \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\times 1000000000000000000000000000000000000000000000000000000000000000000000000}
Dividiu \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} per \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000} multiplicant \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} pel recíproc de \frac{1}{1000000000000000000000000000000000000000000000000000000000000000000000000}.
\sqrt{\frac{1}{100000000000000}}
Multipliqueu \frac{1}{100000000000000000000000000000000000000000000000000000000000000000000000000000000000000} per 1000000000000000000000000000000000000000000000000000000000000000000000000 per obtenir \frac{1}{100000000000000}.
\frac{1}{10000000}
Torneu a escriure l'arrel quadrada de la divisió \frac{1}{100000000000000} com a divisió d'arrels quadrades \frac{\sqrt{1}}{\sqrt{100000000000000}}. Pren l'arrel quadrada del numerador i del denominador.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}