Ves al contingut principal
Diferencieu θ
Tick mark Image
Calcula
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

\cos(-\theta ^{1}+90)\frac{\mathrm{d}}{\mathrm{d}\theta }(-\theta ^{1}+90)
Si F és la composició de dues funcions diferenciables, f\left(u\right) i u=g\left(x\right), és a dir, si F\left(x\right)=f\left(g\left(x\right)\right), la derivada de F és la derivada de f en relació amb u per la derivada de g en relació amb x, és a dir, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\cos(-\theta ^{1}+90)\left(-1\right)\theta ^{1-1}
La derivada d'un polinomi és la suma de les derivades dels seus termes. La derivada d'un terme constant és 0. La derivada de ax^{n} és nax^{n-1}.
-\cos(-\theta ^{1}+90)
Simplifiqueu.
-\cos(-\theta +90)
Per a qualsevol terme t, t^{1}=t.