Ves al contingut principal
Calcula
Tick mark Image

Problemes similars de la cerca web

Compartir

\int _{0}^{2}\left(x\left(x^{2}-4x+4\right)\right)^{2}\mathrm{d}x
Utilitzeu el teorema del binomi \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per desenvolupar \left(x-2\right)^{2}.
\int _{0}^{2}\left(x^{3}-4x^{2}+4x\right)^{2}\mathrm{d}x
Utilitzeu la propietat distributiva per multiplicar x per x^{2}-4x+4.
\int _{0}^{2}x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
Eleveu x^{3}-4x^{2}+4x al quadrat.
\int x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
Avaluar primer la integral indefinida.
\int x^{6}\mathrm{d}x+\int -8x^{5}\mathrm{d}x+\int 24x^{4}\mathrm{d}x+\int -32x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integreu la suma terme per terme.
\int x^{6}\mathrm{d}x-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Desprotegiu la constant en cadascuna de les condicions.
\frac{x^{7}}{7}-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{6}\mathrm{d}x amb \frac{x^{7}}{7}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{5}\mathrm{d}x amb \frac{x^{6}}{6}. Multipliqueu -8 per \frac{x^{6}}{6}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{4}\mathrm{d}x amb \frac{x^{5}}{5}. Multipliqueu 24 per \frac{x^{5}}{5}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+16\int x^{2}\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{3}\mathrm{d}x amb \frac{x^{4}}{4}. Multipliqueu -32 per \frac{x^{4}}{4}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+\frac{16x^{3}}{3}
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{2}\mathrm{d}x amb \frac{x^{3}}{3}. Multipliqueu 16 per \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-8x^{4}+\frac{24x^{5}}{5}-\frac{4x^{6}}{3}+\frac{x^{7}}{7}
Simplifiqueu.
\frac{16}{3}\times 2^{3}-8\times 2^{4}+\frac{24}{5}\times 2^{5}-\frac{4}{3}\times 2^{6}+\frac{2^{7}}{7}-\left(\frac{16}{3}\times 0^{3}-8\times 0^{4}+\frac{24}{5}\times 0^{5}-\frac{4}{3}\times 0^{6}+\frac{0^{7}}{7}\right)
La integral definida d'un polinomi és l'antiderivada de l`expressió avaluada en el límit superior de la integració menys l'antiderivada avaluada en el límit inferior de la integració.
\frac{128}{105}
Simplifiqueu.