Ves al contingut principal
Calcula
Tick mark Image
Diferencieu γ
Tick mark Image

Problemes similars de la cerca web

Compartir

\int \int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r\mathrm{d}\theta
Avaluar primer la integral indefinida.
\int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r\theta
Cerqueu la integral de \int _{0}^{1}\gamma \sqrt{4r^{2}+1}\mathrm{d}r amb l'índex de la regla d'integrals comunes \int a\mathrm{d}\theta =a\theta .
\frac{\left(2\sqrt{5}+\ln(2+\sqrt{5})\right)\gamma \theta }{4}
Simplifiqueu.
\frac{1}{4}\left(2\times 5^{\frac{1}{2}}+\ln(2+5^{\frac{1}{2}})\right)\gamma \times 2\pi -\frac{1}{4}\left(2\times 5^{\frac{1}{2}}+\ln(2+5^{\frac{1}{2}})\right)\gamma \times 0
La integral definida d'un polinomi és l'antiderivada de l`expressió avaluada en el límit superior de la integració menys l'antiderivada avaluada en el límit inferior de la integració.
\frac{\left(2\sqrt{5}+\ln(2+\sqrt{5})\right)\gamma \pi }{2}
Simplifiqueu.