Ves al contingut principal
Calcula
Tick mark Image
Diferencieu x
Tick mark Image

Problemes similars de la cerca web

Compartir

\int \left(25\left(x^{3}\right)^{2}+40x^{3}+16\right)\left(15x^{2}+4\right)\mathrm{d}x
Utilitzeu el teorema del binomi \left(a+b\right)^{2}=a^{2}+2ab+b^{2} per desenvolupar \left(5x^{3}+4\right)^{2}.
\int \left(25x^{6}+40x^{3}+16\right)\left(15x^{2}+4\right)\mathrm{d}x
Per elevar una potència a una altra potència, multipliqueu-ne els exponents. Multipliqueu 3 i 2 per obtenir 6.
\int 375x^{8}+100x^{6}+600x^{5}+160x^{3}+240x^{2}+64\mathrm{d}x
Utilitzeu la propietat distributiva per multiplicar 25x^{6}+40x^{3}+16 per 15x^{2}+4.
\int 375x^{8}\mathrm{d}x+\int 100x^{6}\mathrm{d}x+\int 600x^{5}\mathrm{d}x+\int 160x^{3}\mathrm{d}x+\int 240x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Integreu la suma terme per terme.
375\int x^{8}\mathrm{d}x+100\int x^{6}\mathrm{d}x+600\int x^{5}\mathrm{d}x+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Desprotegiu la constant en cadascuna de les condicions.
\frac{125x^{9}}{3}+100\int x^{6}\mathrm{d}x+600\int x^{5}\mathrm{d}x+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{8}\mathrm{d}x amb \frac{x^{9}}{9}. Multipliqueu 375 per \frac{x^{9}}{9}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+600\int x^{5}\mathrm{d}x+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{6}\mathrm{d}x amb \frac{x^{7}}{7}. Multipliqueu 100 per \frac{x^{7}}{7}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+160\int x^{3}\mathrm{d}x+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{5}\mathrm{d}x amb \frac{x^{6}}{6}. Multipliqueu 600 per \frac{x^{6}}{6}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+240\int x^{2}\mathrm{d}x+\int 64\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{3}\mathrm{d}x amb \frac{x^{4}}{4}. Multipliqueu 160 per \frac{x^{4}}{4}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+80x^{3}+\int 64\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{2}\mathrm{d}x amb \frac{x^{3}}{3}. Multipliqueu 240 per \frac{x^{3}}{3}.
\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+100x^{6}+40x^{4}+80x^{3}+64x
Cerqueu la integral de 64 amb l'índex de la regla d'integrals comunes \int a\mathrm{d}x=ax.
80x^{3}+64x+100x^{6}+40x^{4}+\frac{125x^{9}}{3}+\frac{100x^{7}}{7}
Simplifiqueu.
80x^{3}+64x+100x^{6}+40x^{4}+\frac{125x^{9}}{3}+\frac{100x^{7}}{7}+С
Si F\left(x\right) és un antiderivat de l' f\left(x\right), el F\left(x\right)+C s'atorga el conjunt de tots els antiderivats de l' f\left(x\right). Per tant, afegiu la constant d'integració C\in \mathrm{R} al resultat.