Calcula
3\ln(|x|)+\frac{x^{6}}{3}-\frac{1}{8x^{8}}+С
Diferencieu x
2x^{5}+\frac{3}{x}+\frac{1}{x^{9}}
Compartir
Copiat al porta-retalls
\int 2x^{5}\mathrm{d}x+\int \frac{3}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Integreu la suma terme per terme.
2\int x^{5}\mathrm{d}x+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Desprotegiu la constant en cadascuna de les condicions.
\frac{x^{6}}{3}+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{5}\mathrm{d}x amb \frac{x^{6}}{6}. Multipliqueu 2 per \frac{x^{6}}{6}.
\frac{x^{6}}{3}+3\ln(|x|)+\int \frac{1}{x^{9}}\mathrm{d}x
Utilitzeu \int \frac{1}{x}\mathrm{d}x=\ln(|x|) de l'índex d'integrals comunes per obtenir el resultat.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int \frac{1}{x^{9}}\mathrm{d}x amb -\frac{1}{8x^{8}}.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}+С
Si F\left(x\right) és un antiderivat de l' f\left(x\right), el F\left(x\right)+C s'atorga el conjunt de tots els antiderivats de l' f\left(x\right). Per tant, afegiu la constant d'integració C\in \mathrm{R} al resultat.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}