Ves al contingut principal
Calcula
Tick mark Image
Diferencieu x
Tick mark Image

Problemes similars de la cerca web

Compartir

\int \frac{x\left(x-2\right)\left(x+2\right)\left(x^{2}+5\right)}{x+2}\mathrm{d}x
Calculeu les expressions que encara no s'hagin calculat a \frac{x^{5}+x^{3}-20x}{x+2}.
\int x\left(x-2\right)\left(x^{2}+5\right)\mathrm{d}x
Anul·leu x+2 tant al numerador com al denominador.
\int x^{4}-2x^{3}+5x^{2}-10x\mathrm{d}x
Expandiu l'expressió.
\int x^{4}\mathrm{d}x+\int -2x^{3}\mathrm{d}x+\int 5x^{2}\mathrm{d}x+\int -10x\mathrm{d}x
Integrar la suma per trimestre.
\int x^{4}\mathrm{d}x-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
Desprotegiu la constant en cadascuna de les condicions.
\frac{x^{5}}{5}-2\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{4}\mathrm{d}x amb \frac{x^{5}}{5}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+5\int x^{2}\mathrm{d}x-10\int x\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{3}\mathrm{d}x amb \frac{x^{4}}{4}. Multipliqueu -2 per \frac{x^{4}}{4}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-10\int x\mathrm{d}x
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x^{2}\mathrm{d}x amb \frac{x^{3}}{3}. Multipliqueu 5 per \frac{x^{3}}{3}.
\frac{x^{5}}{5}-\frac{x^{4}}{2}+\frac{5x^{3}}{3}-5x^{2}
Des de \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per a k\neq -1, substituïu \int x\mathrm{d}x amb \frac{x^{2}}{2}. Multipliqueu -10 per \frac{x^{2}}{2}.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}
Simplifiqueu.
-5x^{2}+\frac{5x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}+С
Si F\left(x\right) és un antiderivat de l' f\left(x\right), el F\left(x\right)+C s'atorga el conjunt de tots els antiderivats de l' f\left(x\right). Per tant, afegiu la constant d'integració C\in \mathrm{R} al resultat.