Ves al contingut principal
Calcula
Tick mark Image
Diferencieu x
Tick mark Image

Problemes similars de la cerca web

Compartir

\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0\pi ))
Multipliqueu 0 per 25 per obtenir 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0))
Qualsevol nombre multiplicat per zero dóna com a resultat zero.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))
Qualsevol valor més zero dóna com a resultat el mateix valor.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))=\left(\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}\right)
La derivada d'una funció f\left(x\right) és el límit de \frac{f\left(x+h\right)-f\left(x\right)}{h} quan h passa a 0, si aquest límit existeix.
\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}
Utilitzeu la fórmula de suma per al sinus.
\lim_{h\to 0}\frac{\sin(x)\left(\cos(h)-1\right)+\cos(x)\sin(h)}{h}
Simplifiqueu \sin(x).
\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Reescriviu el límit.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Utilitzeu el fet que x és una constant en calcular els límits quan h passa a 0.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)
El límit de \lim_{x\to 0}\frac{\sin(x)}{x} és 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Per calcular el límit \lim_{h\to 0}\frac{\cos(h)-1}{h}, primer multipliqueu el numerador i el denominador per \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Multipliqueu \cos(h)+1 per \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Utilitzeu la identitat de Pitàgores.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Reescriviu el límit.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
El límit de \lim_{x\to 0}\frac{\sin(x)}{x} és 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Utilitzeu el fet que \frac{\sin(h)}{\cos(h)+1} és continu en 0.
\cos(x)
Substituir el valor 0 a l'expressió \sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x).