Resoleu y (complex solution)
\left\{\begin{matrix}y=-\frac{2x\left(x-2\right)}{z}\text{, }&z\neq 0\text{ and }x\neq z\text{ and }x\neq -z\\y\in \mathrm{C}\text{, }&z=0\text{ and }x\neq 0\end{matrix}\right,
Resoleu y
\left\{\begin{matrix}y=-\frac{2x\left(x-2\right)}{z}\text{, }&z\neq 0\text{ and }|x|\neq |z|\\y\in \mathrm{R}\text{, }&z=0\text{ and }x\neq 0\end{matrix}\right,
Resoleu x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{4-2yz}}{2}+1\text{, }&\left(z\neq -\frac{y}{2}+2\text{ and }z\neq -\frac{y}{2}-2\right)\text{ or }\left(z\neq -\frac{y}{2}+2\text{ and }y\neq -2\text{ and }arg(-\frac{y}{2}-1)<\pi \right)\text{ or }\left(arg(2-y)\geq \pi \text{ and }y\neq 2\text{ and }z\neq -\frac{y}{2}-2\right)\text{ or }\left(arg(2-y)\geq \pi \text{ and }y\neq 2\text{ and }arg(-\frac{y}{2}-1)<\pi \right)\\x=-\frac{\sqrt{4-2yz}}{2}+1\text{, }&\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }z\neq -\frac{y}{2}-2\text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq -\frac{y}{2}+2\text{ and }z\neq -\frac{y}{2}-2\text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }z\neq 1\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }arg(-\frac{y}{2}-1)\geq \pi \text{ and }y\neq -2\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }z\neq -1\right)\text{ or }\left(z\neq 0\text{ and }y\neq 2\text{ and }arg(y-2)\geq \pi \text{ and }z\neq -\frac{y}{2}-2\text{ and }y\neq -2\right)\\x\neq 0\text{, }&z=0\end{matrix}\right,
Compartir
Copiat al porta-retalls
\left(-x-z\right)\left(x+z\right)-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Multipliqueu els dos costats de l'equació per \left(x-z\right)\left(-x-z\right), el mínim comú múltiple de x-z,x+z,x^{2}-z^{2}.
-x^{2}-2xz-z^{2}-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Utilitzeu la propietat distributiva per multiplicar -x-z per x+z i combinar-los com termes.
-x^{2}-2xz-z^{2}-\left(-x^{2}+2xz-z^{2}\right)=-z\left(2x^{2}+zy\right)
Utilitzeu la propietat distributiva per multiplicar -x+z per x-z i combinar-los com termes.
-x^{2}-2xz-z^{2}+x^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Per trobar l'oposat de -x^{2}+2xz-z^{2}, cerqueu l'oposat de cada terme.
-2xz-z^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Combineu -x^{2} i x^{2} per obtenir 0.
-4xz-z^{2}+z^{2}=-z\left(2x^{2}+zy\right)
Combineu -2xz i -2xz per obtenir -4xz.
-4xz=-z\left(2x^{2}+zy\right)
Combineu -z^{2} i z^{2} per obtenir 0.
-4xz=-2zx^{2}-yz^{2}
Utilitzeu la propietat distributiva per multiplicar -z per 2x^{2}+zy.
-2zx^{2}-yz^{2}=-4xz
Intercanvieu els costats perquè tots els termes variables estiguin al costat esquerre.
-yz^{2}=-4xz+2zx^{2}
Afegiu 2zx^{2} als dos costats.
\left(-z^{2}\right)y=2zx^{2}-4xz
L'equació té la forma estàndard.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{2xz\left(x-2\right)}{-z^{2}}
Dividiu els dos costats per -z^{2}.
y=\frac{2xz\left(x-2\right)}{-z^{2}}
En dividir per -z^{2} es desfà la multiplicació per -z^{2}.
y=-\frac{2x\left(x-2\right)}{z}
Dividiu 2xz\left(-2+x\right) per -z^{2}.
\left(-x-z\right)\left(x+z\right)-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Multipliqueu els dos costats de l'equació per \left(x-z\right)\left(-x-z\right), el mínim comú múltiple de x-z,x+z,x^{2}-z^{2}.
-x^{2}-2xz-z^{2}-\left(-x+z\right)\left(x-z\right)=-z\left(2x^{2}+zy\right)
Utilitzeu la propietat distributiva per multiplicar -x-z per x+z i combinar-los com termes.
-x^{2}-2xz-z^{2}-\left(-x^{2}+2xz-z^{2}\right)=-z\left(2x^{2}+zy\right)
Utilitzeu la propietat distributiva per multiplicar -x+z per x-z i combinar-los com termes.
-x^{2}-2xz-z^{2}+x^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Per trobar l'oposat de -x^{2}+2xz-z^{2}, cerqueu l'oposat de cada terme.
-2xz-z^{2}-2xz+z^{2}=-z\left(2x^{2}+zy\right)
Combineu -x^{2} i x^{2} per obtenir 0.
-4xz-z^{2}+z^{2}=-z\left(2x^{2}+zy\right)
Combineu -2xz i -2xz per obtenir -4xz.
-4xz=-z\left(2x^{2}+zy\right)
Combineu -z^{2} i z^{2} per obtenir 0.
-4xz=-2zx^{2}-yz^{2}
Utilitzeu la propietat distributiva per multiplicar -z per 2x^{2}+zy.
-2zx^{2}-yz^{2}=-4xz
Intercanvieu els costats perquè tots els termes variables estiguin al costat esquerre.
-yz^{2}=-4xz+2zx^{2}
Afegiu 2zx^{2} als dos costats.
\left(-z^{2}\right)y=2zx^{2}-4xz
L'equació té la forma estàndard.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{2xz\left(x-2\right)}{-z^{2}}
Dividiu els dos costats per -z^{2}.
y=\frac{2xz\left(x-2\right)}{-z^{2}}
En dividir per -z^{2} es desfà la multiplicació per -z^{2}.
y=-\frac{2x\left(x-2\right)}{z}
Dividiu 2xz\left(-2+x\right) per -z^{2}.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}