Ves al contingut principal
Calcula
Tick mark Image
Diferencieu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de x+2 i x-3 és \left(x-3\right)\left(x+2\right). Multipliqueu \frac{2}{x+2} per \frac{x-3}{x-3}. Multipliqueu \frac{7}{x-3} per \frac{x+2}{x+2}.
\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
Com que \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} i \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)}
Feu les multiplicacions a 2\left(x-3\right)-7\left(x+2\right).
\frac{-5x-20}{\left(x-3\right)\left(x+2\right)}
Combineu els termes similars de 2x-6-7x-14.
\frac{-5x-20}{x^{2}-x-6}
Expandiu \left(x-3\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de x+2 i x-3 és \left(x-3\right)\left(x+2\right). Multipliqueu \frac{2}{x+2} per \frac{x-3}{x-3}. Multipliqueu \frac{7}{x-3} per \frac{x+2}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
Com que \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} i \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)})
Feu les multiplicacions a 2\left(x-3\right)-7\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{\left(x-3\right)\left(x+2\right)})
Combineu els termes similars de 2x-6-7x-14.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}+2x-3x-6})
Per aplicar la propietat distributiva, cal multiplicar cada terme de l'operació x-3 per cada terme de l'operació x+2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}-x-6})
Combineu 2x i -3x per obtenir -x.
\frac{\left(x^{2}-x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-20)-\left(-5x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-6)}{\left(x^{2}-x^{1}-6\right)^{2}}
Per a dues funcions diferenciables qualssevol, la derivada del quocient de dues funcions és el denominador multiplicat per la derivada del numerador menys el numerador multiplicat per la derivada del denominador, i tot dividit pel denominador al quadrat.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-20\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
La derivada d'un polinomi és la suma de les derivades dels seus termes. La derivada d'un terme constant és 0. La derivada de ax^{n} és nax^{n-1}.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Simplifiqueu.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Multipliqueu x^{2}-x^{1}-6 per -5x^{0}.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}\times 2x^{1}-5x^{1}\left(-1\right)x^{0}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Multipliqueu -5x^{1}-20 per 2x^{1}-x^{0}.
\frac{-5x^{2}-\left(-5x^{1}\right)-6\left(-5\right)x^{0}-\left(-5\times 2x^{1+1}-5\left(-1\right)x^{1}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Per multiplicar potències de la mateixa base, sumeu-ne els exponents.
\frac{-5x^{2}+5x^{1}+30x^{0}-\left(-10x^{2}+5x^{1}-40x^{1}+20x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
Simplifiqueu.
\frac{5x^{2}+40x^{1}+10x^{0}}{\left(x^{2}-x^{1}-6\right)^{2}}
Combineu els termes iguals.
\frac{5x^{2}+40x+10x^{0}}{\left(x^{2}-x-6\right)^{2}}
Per a qualsevol terme t, t^{1}=t.
\frac{5x^{2}+40x+10\times 1}{\left(x^{2}-x-6\right)^{2}}
Per a qualsevol terme t excepte 0, t^{0}=1.
\frac{5x^{2}+40x+10}{\left(x^{2}-x-6\right)^{2}}
Per a qualsevol terme t, t\times 1=t i 1t=t.