Calcula
\frac{3x-2}{x\left(x+1\right)}
Diferencieu x
\frac{2+4x-3x^{2}}{\left(x\left(x+1\right)\right)^{2}}
Gràfic
Compartir
Copiat al porta-retalls
\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}-\frac{4}{x}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de x i x+1 és x\left(x+1\right). Multipliqueu \frac{2}{x} per \frac{x+1}{x+1}. Multipliqueu \frac{5}{x+1} per \frac{x}{x}.
\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}-\frac{4}{x}
Com que \frac{2\left(x+1\right)}{x\left(x+1\right)} i \frac{5x}{x\left(x+1\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{2x+2+5x}{x\left(x+1\right)}-\frac{4}{x}
Feu les multiplicacions a 2\left(x+1\right)+5x.
\frac{7x+2}{x\left(x+1\right)}-\frac{4}{x}
Combineu els termes similars de 2x+2+5x.
\frac{7x+2}{x\left(x+1\right)}-\frac{4\left(x+1\right)}{x\left(x+1\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de x\left(x+1\right) i x és x\left(x+1\right). Multipliqueu \frac{4}{x} per \frac{x+1}{x+1}.
\frac{7x+2-4\left(x+1\right)}{x\left(x+1\right)}
Com que \frac{7x+2}{x\left(x+1\right)} i \frac{4\left(x+1\right)}{x\left(x+1\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{7x+2-4x-4}{x\left(x+1\right)}
Feu les multiplicacions a 7x+2-4\left(x+1\right).
\frac{3x-2}{x\left(x+1\right)}
Combineu els termes similars de 7x+2-4x-4.
\frac{3x-2}{x^{2}+x}
Expandiu x\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{5x}{x\left(x+1\right)}-\frac{4}{x})
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de x i x+1 és x\left(x+1\right). Multipliqueu \frac{2}{x} per \frac{x+1}{x+1}. Multipliqueu \frac{5}{x+1} per \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+5x}{x\left(x+1\right)}-\frac{4}{x})
Com que \frac{2\left(x+1\right)}{x\left(x+1\right)} i \frac{5x}{x\left(x+1\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+5x}{x\left(x+1\right)}-\frac{4}{x})
Feu les multiplicacions a 2\left(x+1\right)+5x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2}{x\left(x+1\right)}-\frac{4}{x})
Combineu els termes similars de 2x+2+5x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2}{x\left(x+1\right)}-\frac{4\left(x+1\right)}{x\left(x+1\right)})
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de x\left(x+1\right) i x és x\left(x+1\right). Multipliqueu \frac{4}{x} per \frac{x+1}{x+1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2-4\left(x+1\right)}{x\left(x+1\right)})
Com que \frac{7x+2}{x\left(x+1\right)} i \frac{4\left(x+1\right)}{x\left(x+1\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7x+2-4x-4}{x\left(x+1\right)})
Feu les multiplicacions a 7x+2-4\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-2}{x\left(x+1\right)})
Combineu els termes similars de 7x+2-4x-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-2}{x^{2}+x})
Utilitzeu la propietat distributiva per multiplicar x per x+1.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{1}-2)-\left(3x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Per a dues funcions diferenciables qualssevol, la derivada del quocient de dues funcions és el denominador multiplicat per la derivada del numerador menys el numerador multiplicat per la derivada del denominador, i tot dividit pel denominador al quadrat.
\frac{\left(x^{2}+x^{1}\right)\times 3x^{1-1}-\left(3x^{1}-2\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
La derivada d'un polinomi és la suma de les derivades dels seus termes. La derivada d'un terme constant és 0. La derivada de ax^{n} és nax^{n-1}.
\frac{\left(x^{2}+x^{1}\right)\times 3x^{0}-\left(3x^{1}-2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Simplifiqueu.
\frac{x^{2}\times 3x^{0}+x^{1}\times 3x^{0}-\left(3x^{1}-2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Multipliqueu x^{2}+x^{1} per 3x^{0}.
\frac{x^{2}\times 3x^{0}+x^{1}\times 3x^{0}-\left(3x^{1}\times 2x^{1}+3x^{1}x^{0}-2\times 2x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Multipliqueu 3x^{1}-2 per 2x^{1}+x^{0}.
\frac{3x^{2}+3x^{1}-\left(3\times 2x^{1+1}+3x^{1}-2\times 2x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Per multiplicar potències de la mateixa base, sumeu-ne els exponents.
\frac{3x^{2}+3x^{1}-\left(6x^{2}+3x^{1}-4x^{1}-2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Simplifiqueu.
\frac{-3x^{2}+4x^{1}+2x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
Combineu els termes iguals.
\frac{-3x^{2}+4x+2x^{0}}{\left(x^{2}+x\right)^{2}}
Per a qualsevol terme t, t^{1}=t.
\frac{-3x^{2}+4x+2\times 1}{\left(x^{2}+x\right)^{2}}
Per a qualsevol terme t excepte 0, t^{0}=1.
\frac{-3x^{2}+4x+2}{\left(x^{2}+x\right)^{2}}
Per a qualsevol terme t, t\times 1=t i 1t=t.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}