Ves al contingut principal
Resoleu x
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Multipliqueu els dos costats de l'equació per 12, el mínim comú múltiple de 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Utilitzeu la propietat distributiva per multiplicar 4x per x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Utilitzeu la propietat distributiva per multiplicar -3x per x+1.
x^{2}-4x-3x+3x+4=0
Combineu 4x^{2} i -3x^{2} per obtenir x^{2}.
x^{2}-7x+3x+4=0
Combineu -4x i -3x per obtenir -7x.
x^{2}-4x+4=0
Combineu -7x i 3x per obtenir -4x.
a+b=-4 ab=4
Per resoldre l'equació, el factor x^{2}-4x+4 amb la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Per cercar a i b, configureu un sistema per resoldre.
-1,-4 -2,-2
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 4 de producte.
-1-4=-5 -2-2=-4
Calculeu la suma de cada parell.
a=-2 b=-2
La solució és la parella que atorga -4 de suma.
\left(x-2\right)\left(x-2\right)
Torna a escriure l'expressió factoritada \left(x+a\right)\left(x+b\right) fent servir els valors obtinguts.
\left(x-2\right)^{2}
Reescriviu com a quadrat del binomi.
x=2
Per trobar la solució de l'equació, resoleu x-2=0.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Multipliqueu els dos costats de l'equació per 12, el mínim comú múltiple de 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Utilitzeu la propietat distributiva per multiplicar 4x per x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Utilitzeu la propietat distributiva per multiplicar -3x per x+1.
x^{2}-4x-3x+3x+4=0
Combineu 4x^{2} i -3x^{2} per obtenir x^{2}.
x^{2}-7x+3x+4=0
Combineu -4x i -3x per obtenir -7x.
x^{2}-4x+4=0
Combineu -7x i 3x per obtenir -4x.
a+b=-4 ab=1\times 4=4
Per resoldre l'equació, el factor de l'esquerra l'ha agrupat. Primer, cal tornar a escriure el costat esquerre de la mà a x^{2}+ax+bx+4. Per cercar a i b, configureu un sistema per resoldre.
-1,-4 -2,-2
Com que ab és positiu, a i b tenen el mateix inici de sessió. Com que a+b és negatiu, a i b són ambdós negatius. Llista de totes les parelles d'enters que donen 4 de producte.
-1-4=-5 -2-2=-4
Calculeu la suma de cada parell.
a=-2 b=-2
La solució és la parella que atorga -4 de suma.
\left(x^{2}-2x\right)+\left(-2x+4\right)
Reescriviu x^{2}-4x+4 com a \left(x^{2}-2x\right)+\left(-2x+4\right).
x\left(x-2\right)-2\left(x-2\right)
x al primer grup i -2 al segon grup.
\left(x-2\right)\left(x-2\right)
Simplifiqueu el terme comú x-2 mitjançant la propietat distributiva.
\left(x-2\right)^{2}
Reescriviu com a quadrat del binomi.
x=2
Per trobar la solució de l'equació, resoleu x-2=0.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Multipliqueu els dos costats de l'equació per 12, el mínim comú múltiple de 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Utilitzeu la propietat distributiva per multiplicar 4x per x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Utilitzeu la propietat distributiva per multiplicar -3x per x+1.
x^{2}-4x-3x+3x+4=0
Combineu 4x^{2} i -3x^{2} per obtenir x^{2}.
x^{2}-7x+3x+4=0
Combineu -4x i -3x per obtenir -7x.
x^{2}-4x+4=0
Combineu -7x i 3x per obtenir -4x.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
Aquesta equació es troba en una fórmula estàndard: ax^{2}+bx+c=0. Substituïu 1 per a, -4 per b i 4 per c a la fórmula quadràtica \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
Eleveu -4 al quadrat.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Multipliqueu -4 per 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
Sumeu 16 i -16.
x=-\frac{-4}{2}
Calculeu l'arrel quadrada de 0.
x=\frac{4}{2}
El contrari de -4 és 4.
x=2
Dividiu 4 per 2.
4x\left(x-1\right)-3x\left(x+1\right)+3x+4=0
Multipliqueu els dos costats de l'equació per 12, el mínim comú múltiple de 3,4,12.
4x^{2}-4x-3x\left(x+1\right)+3x+4=0
Utilitzeu la propietat distributiva per multiplicar 4x per x-1.
4x^{2}-4x-3x^{2}-3x+3x+4=0
Utilitzeu la propietat distributiva per multiplicar -3x per x+1.
x^{2}-4x-3x+3x+4=0
Combineu 4x^{2} i -3x^{2} per obtenir x^{2}.
x^{2}-7x+3x+4=0
Combineu -4x i -3x per obtenir -7x.
x^{2}-4x+4=0
Combineu -7x i 3x per obtenir -4x.
\left(x-2\right)^{2}=0
Factor x^{2}-4x+4. En general, quan x^{2}+bx+c és un quadrat perfecte, sempre es pot tenir en compte com \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Calculeu l'arrel quadrada als dos costats de l'equació.
x-2=0 x-2=0
Simplifiqueu.
x=2 x=2
Sumeu 2 als dos costats de l'equació.
x=2
L'equació ja s'ha resolt. Les solucions són les mateixes.