Ves al contingut principal
Calcula
Tick mark Image
Expandiu
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Aïlleu la 2x^{2}-7x+3. Aïlleu la 4x^{2}+4x-3.
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(x-3\right)\left(2x-1\right) i \left(2x-1\right)\left(2x+3\right) és \left(x-3\right)\left(2x-1\right)\left(2x+3\right). Multipliqueu \frac{x}{\left(x-3\right)\left(2x-1\right)} per \frac{2x+3}{2x+3}. Multipliqueu \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} per \frac{x-3}{x-3}.
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Com que \frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} i \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Feu les multiplicacions a x\left(2x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Combineu els termes similars de 2x^{2}+3x+x^{2}-3x-3x+9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{x\left(2x-3\right)}
Aïlleu la 2x^{2}-3x.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(x-3\right)\left(2x-1\right)\left(2x+3\right) i x\left(2x-3\right) és x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right). Multipliqueu \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} per \frac{x\left(2x-3\right)}{x\left(2x-3\right)}. Multipliqueu \frac{x^{2}+1}{x\left(2x-3\right)} per \frac{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Com que \frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} i \frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Feu les multiplicacions a \left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Combineu els termes similars de 6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9.
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{8x^{5}-28x^{4}-6x^{3}+63x^{2}-27x}
Expandiu x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{x}{\left(x-3\right)\left(2x-1\right)}+\frac{x-3}{\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Aïlleu la 2x^{2}-7x+3. Aïlleu la 4x^{2}+4x-3.
\frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}+\frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(x-3\right)\left(2x-1\right) i \left(2x-1\right)\left(2x+3\right) és \left(x-3\right)\left(2x-1\right)\left(2x+3\right). Multipliqueu \frac{x}{\left(x-3\right)\left(2x-1\right)} per \frac{2x+3}{2x+3}. Multipliqueu \frac{x-3}{\left(2x-1\right)\left(2x+3\right)} per \frac{x-3}{x-3}.
\frac{x\left(2x+3\right)+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Com que \frac{x\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} i \frac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{2x^{2}+3x+x^{2}-3x-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Feu les multiplicacions a x\left(2x+3\right)+\left(x-3\right)\left(x-3\right).
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{2x^{2}-3x}
Combineu els termes similars de 2x^{2}+3x+x^{2}-3x-3x+9.
\frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{x^{2}+1}{x\left(2x-3\right)}
Aïlleu la 2x^{2}-3x.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}-\frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(x-3\right)\left(2x-1\right)\left(2x+3\right) i x\left(2x-3\right) és x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right). Multipliqueu \frac{3x^{2}-3x+9}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)} per \frac{x\left(2x-3\right)}{x\left(2x-3\right)}. Multipliqueu \frac{x^{2}+1}{x\left(2x-3\right)} per \frac{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}.
\frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Com que \frac{\left(3x^{2}-3x+9\right)x\left(2x-3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} i \frac{\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right)}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Feu les multiplicacions a \left(3x^{2}-3x+9\right)x\left(2x-3\right)-\left(x^{2}+1\right)\left(x-3\right)\left(2x-1\right)\left(2x+3\right).
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right)}
Combineu els termes similars de 6x^{4}-9x^{3}-6x^{3}+9x^{2}+18x^{2}-27x-4x^{5}+8x^{4}+15x^{3}-9x^{2}-4x^{3}+8x^{2}+15x-9.
\frac{14x^{4}-4x^{3}+26x^{2}-12x-4x^{5}-9}{8x^{5}-28x^{4}-6x^{3}+63x^{2}-27x}
Expandiu x\left(x-3\right)\left(2x-3\right)\left(2x-1\right)\left(2x+3\right).