\frac { x ^ { 3 } - 2 x ( x + 1 } { x ^ { 3 } - 1 }
Calcula
\frac{x\left(x^{5}-x^{2}-2x-2\right)}{x^{3}-1}
Expandiu
\frac{x^{6}-x^{3}-2x^{2}-2x}{x^{3}-1}
Gràfic
Compartir
Copiat al porta-retalls
x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Aïlleu la x^{3}-1.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x^{3} per \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Com que \frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} i \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
Feu les multiplicacions a x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right).
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
Combineu els termes similars de x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
Expandiu \left(x-1\right)\left(x^{2}+x+1\right).
x^{3}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Aïlleu la x^{3}-1.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}-\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x^{3} per \frac{\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}.
\frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)}
Com que \frac{x^{3}\left(x-1\right)\left(x^{2}+x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} i \frac{2x\left(x+1\right)}{\left(x-1\right)\left(x^{2}+x+1\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x}{\left(x-1\right)\left(x^{2}+x+1\right)}
Feu les multiplicacions a x^{3}\left(x-1\right)\left(x^{2}+x+1\right)-2x\left(x+1\right).
\frac{-2x+x^{6}-x^{3}-2x^{2}}{\left(x-1\right)\left(x^{2}+x+1\right)}
Combineu els termes similars de x^{6}+x^{5}+x^{4}-x^{5}-x^{4}-x^{3}-2x^{2}-2x.
\frac{-2x+x^{6}-x^{3}-2x^{2}}{x^{3}-1}
Expandiu \left(x-1\right)\left(x^{2}+x+1\right).
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}