Ves al contingut principal
Calcula
Tick mark Image
Expandiu
Tick mark Image
Gràfic

Problemes similars de la cerca web

Compartir

\frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)}+\frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)}
Aïlleu la x^{2}-25. Aïlleu la x^{2}+11x+30.
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(x-5\right)\left(x+5\right) i \left(x+5\right)\left(x+6\right) és \left(x-5\right)\left(x+5\right)\left(x+6\right). Multipliqueu \frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)} per \frac{x+6}{x+6}. Multipliqueu \frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)} per \frac{x-5}{x-5}.
\frac{\left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Com que \frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} i \frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Feu les multiplicacions a \left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right).
\frac{2x^{3}+2x^{2}+5x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Combineu els termes similars de x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5.
\frac{2x^{3}+2x^{2}+5x+5}{x^{3}+6x^{2}-25x-150}
Expandiu \left(x-5\right)\left(x+5\right)\left(x+6\right).
\frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)}+\frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)}
Aïlleu la x^{2}-25. Aïlleu la x^{2}+11x+30.
\frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}+\frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. El mínim comú múltiple de \left(x-5\right)\left(x+5\right) i \left(x+5\right)\left(x+6\right) és \left(x-5\right)\left(x+5\right)\left(x+6\right). Multipliqueu \frac{x^{2}+x}{\left(x-5\right)\left(x+5\right)} per \frac{x+6}{x+6}. Multipliqueu \frac{x^{2}-1}{\left(x+5\right)\left(x+6\right)} per \frac{x-5}{x-5}.
\frac{\left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Com que \frac{\left(x^{2}+x\right)\left(x+6\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} i \frac{\left(x^{2}-1\right)\left(x-5\right)}{\left(x-5\right)\left(x+5\right)\left(x+6\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Feu les multiplicacions a \left(x^{2}+x\right)\left(x+6\right)+\left(x^{2}-1\right)\left(x-5\right).
\frac{2x^{3}+2x^{2}+5x+5}{\left(x-5\right)\left(x+5\right)\left(x+6\right)}
Combineu els termes similars de x^{3}+6x^{2}+x^{2}+6x+x^{3}-5x^{2}-x+5.
\frac{2x^{3}+2x^{2}+5x+5}{x^{3}+6x^{2}-25x-150}
Expandiu \left(x-5\right)\left(x+5\right)\left(x+6\right).