Calcula
\frac{2}{a+3}
Expandiu
\frac{2}{a+3}
Compartir
Copiat al porta-retalls
\frac{\left(81-a^{2}\right)\left(2a+6\right)}{\left(a^{2}+6a+9\right)\left(9-a\right)}\times \frac{1}{a+9}
Dividiu \frac{81-a^{2}}{a^{2}+6a+9} per \frac{9-a}{2a+6} multiplicant \frac{81-a^{2}}{a^{2}+6a+9} pel recíproc de \frac{9-a}{2a+6}.
\frac{2\left(a-9\right)\left(-a-9\right)\left(a+3\right)}{\left(-a+9\right)\left(a+3\right)^{2}}\times \frac{1}{a+9}
Calculeu les expressions que encara no s'hagin calculat a \frac{\left(81-a^{2}\right)\left(2a+6\right)}{\left(a^{2}+6a+9\right)\left(9-a\right)}.
\frac{-2\left(-a-9\right)\left(a+3\right)\left(-a+9\right)}{\left(-a+9\right)\left(a+3\right)^{2}}\times \frac{1}{a+9}
Extraieu el signe negatiu de -9+a.
\frac{-2\left(-a-9\right)}{a+3}\times \frac{1}{a+9}
Anul·leu \left(a+3\right)\left(-a+9\right) tant al numerador com al denominador.
\frac{-2\left(-a-9\right)}{\left(a+3\right)\left(a+9\right)}
Per multiplicar \frac{-2\left(-a-9\right)}{a+3} per \frac{1}{a+9}, multipliqueu el numerador pel numerador i el denominador pel denominador.
\frac{-2\left(-1\right)\left(a+9\right)}{\left(a+3\right)\left(a+9\right)}
Extraieu el signe negatiu de -a-9.
\frac{-2\left(-1\right)}{a+3}
Anul·leu a+9 tant al numerador com al denominador.
\frac{2}{a+3}
Multipliqueu -2 per -1 per obtenir 2.
\frac{\left(81-a^{2}\right)\left(2a+6\right)}{\left(a^{2}+6a+9\right)\left(9-a\right)}\times \frac{1}{a+9}
Dividiu \frac{81-a^{2}}{a^{2}+6a+9} per \frac{9-a}{2a+6} multiplicant \frac{81-a^{2}}{a^{2}+6a+9} pel recíproc de \frac{9-a}{2a+6}.
\frac{2\left(a-9\right)\left(-a-9\right)\left(a+3\right)}{\left(-a+9\right)\left(a+3\right)^{2}}\times \frac{1}{a+9}
Calculeu les expressions que encara no s'hagin calculat a \frac{\left(81-a^{2}\right)\left(2a+6\right)}{\left(a^{2}+6a+9\right)\left(9-a\right)}.
\frac{-2\left(-a-9\right)\left(a+3\right)\left(-a+9\right)}{\left(-a+9\right)\left(a+3\right)^{2}}\times \frac{1}{a+9}
Extraieu el signe negatiu de -9+a.
\frac{-2\left(-a-9\right)}{a+3}\times \frac{1}{a+9}
Anul·leu \left(a+3\right)\left(-a+9\right) tant al numerador com al denominador.
\frac{-2\left(-a-9\right)}{\left(a+3\right)\left(a+9\right)}
Per multiplicar \frac{-2\left(-a-9\right)}{a+3} per \frac{1}{a+9}, multipliqueu el numerador pel numerador i el denominador pel denominador.
\frac{-2\left(-1\right)\left(a+9\right)}{\left(a+3\right)\left(a+9\right)}
Extraieu el signe negatiu de -a-9.
\frac{-2\left(-1\right)}{a+3}
Anul·leu a+9 tant al numerador com al denominador.
\frac{2}{a+3}
Multipliqueu -2 per -1 per obtenir 2.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}