Resoleu x (complex solution)
x\in \mathrm{C}\setminus -6,6,0,-12,3
Resoleu x
x\in \mathrm{R}\setminus 6,-6,0,3,-12
Gràfic
Compartir
Copiat al porta-retalls
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
La variable x no pot ser igual a cap dels valors -6,0, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per 2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar \frac{1}{6} per x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar \frac{1}{6}x+1 per 12+x i combinar-los com termes.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar 3x+\frac{1}{6}x^{2}+12 per \frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Expresseu 3\times \frac{6x-36}{x^{2}-36} com a fracció senzilla.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Per multiplicar \frac{1}{6} per \frac{6x-36}{x^{2}-36}, multipliqueu el numerador pel numerador i el denominador pel denominador.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Expresseu 12\times \frac{6x-36}{x^{2}-36} com a fracció senzilla.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar 3 per 6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Expresseu \frac{18x-108}{x^{2}-36}x com a fracció senzilla.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Calculeu les expressions que encara no s'hagin calculat a \frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Anul·leu 6 tant al numerador com al denominador.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Expresseu \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} com a fracció senzilla.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar 12 per 6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Aïlleu la x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Com que \frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} i \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Feu les multiplicacions a \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Combineu els termes similars de 18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Aïlleu la x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Com que \frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} i \frac{72x-432}{\left(x-6\right)\left(x+6\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Combineu els termes similars de 12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Considereu \left(x-6\right)\left(x+6\right). La multiplicació es pot transformar en una diferència de quadrats fent servir la regla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Eleveu 6 al quadrat.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Resteu x en tots dos costats.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Aïlleu la x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x per \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Com que \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} i \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Feu les multiplicacions a 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Combineu els termes similars de 12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Resteu 12 en tots dos costats.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu 12 per \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Com que \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} i \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Feu les multiplicacions a 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Combineu els termes similars de 12x^{2}-432-12x^{2}-72x+72x+432.
0=0
La variable x no pot ser igual a cap dels valors -6,6, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per \left(x-6\right)\left(x+6\right).
x\in \mathrm{C}
Això és cert per a qualsevol x.
x\in \mathrm{C}\setminus -6,0,6
La variable x no pot ser igual a cap dels valors -6,6,0.
\frac{1}{6}\left(x+6\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
La variable x no pot ser igual a cap dels valors -6,0, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per 2x\left(x+6\right).
\left(\frac{1}{6}x+1\right)\left(12+x\right)\times \frac{6x-36}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar \frac{1}{6} per x+6.
\left(3x+\frac{1}{6}x^{2}+12\right)\times \frac{6x-36}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar \frac{1}{6}x+1 per 12+x i combinar-los com termes.
3x\times \frac{6x-36}{x^{2}-36}+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar 3x+\frac{1}{6}x^{2}+12 per \frac{6x-36}{x^{2}-36}.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{1}{6}x^{2}\times \frac{6x-36}{x^{2}-36}+12\times \frac{6x-36}{x^{2}-36}=x+12
Expresseu 3\times \frac{6x-36}{x^{2}-36} com a fracció senzilla.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+12\times \frac{6x-36}{x^{2}-36}=x+12
Per multiplicar \frac{1}{6} per \frac{6x-36}{x^{2}-36}, multipliqueu el numerador pel numerador i el denominador pel denominador.
\frac{3\left(6x-36\right)}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Expresseu 12\times \frac{6x-36}{x^{2}-36} com a fracció senzilla.
\frac{18x-108}{x^{2}-36}x+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar 3 per 6x-36.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6x-36}{6\left(x^{2}-36\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Expresseu \frac{18x-108}{x^{2}-36}x com a fracció senzilla.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{6\left(x-6\right)}{6\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Calculeu les expressions que encara no s'hagin calculat a \frac{6x-36}{6\left(x^{2}-36\right)}.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Anul·leu 6 tant al numerador com al denominador.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{12\left(6x-36\right)}{x^{2}-36}=x+12
Expresseu \frac{x-6}{\left(x-6\right)\left(x+6\right)}x^{2} com a fracció senzilla.
\frac{\left(18x-108\right)x}{x^{2}-36}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Utilitzeu la propietat distributiva per multiplicar 12 per 6x-36.
\frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)}+\frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Aïlleu la x^{2}-36.
\frac{\left(18x-108\right)x+\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Com que \frac{\left(18x-108\right)x}{\left(x-6\right)\left(x+6\right)} i \frac{\left(x-6\right)x^{2}}{\left(x-6\right)\left(x+6\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{18x^{2}-108x+x^{3}-6x^{2}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Feu les multiplicacions a \left(18x-108\right)x+\left(x-6\right)x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{x^{2}-36}=x+12
Combineu els termes similars de 18x^{2}-108x+x^{3}-6x^{2}.
\frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)}+\frac{72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Aïlleu la x^{2}-36.
\frac{12x^{2}-108x+x^{3}+72x-432}{\left(x-6\right)\left(x+6\right)}=x+12
Com que \frac{12x^{2}-108x+x^{3}}{\left(x-6\right)\left(x+6\right)} i \frac{72x-432}{\left(x-6\right)\left(x+6\right)} tenen el mateix denominador, afegiu-los mitjançant l'addició dels seus numeradors.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}=x+12
Combineu els termes similars de 12x^{2}-108x+x^{3}+72x-432.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}=x+12
Considereu \left(x-6\right)\left(x+6\right). La multiplicació es pot transformar en una diferència de quadrats fent servir la regla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Eleveu 6 al quadrat.
\frac{12x^{2}-36x+x^{3}-432}{x^{2}-36}-x=12
Resteu x en tots dos costats.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-x=12
Aïlleu la x^{2}-36.
\frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)}-\frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu x per \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=12
Com que \frac{12x^{2}-36x+x^{3}-432}{\left(x-6\right)\left(x+6\right)} i \frac{x\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x}{\left(x-6\right)\left(x+6\right)}=12
Feu les multiplicacions a 12x^{2}-36x+x^{3}-432-x\left(x-6\right)\left(x+6\right).
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}=12
Combineu els termes similars de 12x^{2}-36x+x^{3}-432-x^{3}-6x^{2}+6x^{2}+36x.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-12=0
Resteu 12 en tots dos costats.
\frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)}-\frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Per afegir o restar les expressions, amplieu-les perquè els denominadors coincideixin. Multipliqueu 12 per \frac{\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}.
\frac{12x^{2}-432-12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)}=0
Com que \frac{12x^{2}-432}{\left(x-6\right)\left(x+6\right)} i \frac{12\left(x-6\right)\left(x+6\right)}{\left(x-6\right)\left(x+6\right)} tenen el mateix denominador, resteu-los mitjançant la subtracció dels seus numeradors.
\frac{12x^{2}-432-12x^{2}-72x+72x+432}{\left(x-6\right)\left(x+6\right)}=0
Feu les multiplicacions a 12x^{2}-432-12\left(x-6\right)\left(x+6\right).
\frac{0}{\left(x-6\right)\left(x+6\right)}=0
Combineu els termes similars de 12x^{2}-432-12x^{2}-72x+72x+432.
0=0
La variable x no pot ser igual a cap dels valors -6,6, ja que la divisió per zero no s'ha definit. Multipliqueu els dos costats de l'equació per \left(x-6\right)\left(x+6\right).
x\in \mathrm{R}
Això és cert per a qualsevol x.
x\in \mathrm{R}\setminus -6,0,6
La variable x no pot ser igual a cap dels valors -6,6,0.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}