Calcula
\frac{31\sqrt{835}}{62625}\approx 0,01430399
Compartir
Copiat al porta-retalls
\frac{6\times 62\times 6\times 10^{-24}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Per multiplicar potències de la mateixa base, afegiu-ne els exponents. Afegiu -27 i -16 per obtenir -43.
\frac{372\times 6\times 10^{-24}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Multipliqueu 6 per 62 per obtenir 372.
\frac{2232\times 10^{-24}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Multipliqueu 372 per 6 per obtenir 2232.
\frac{2232\times \frac{1}{1000000000000000000000000}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Calculeu 10 elevat a -24 per obtenir \frac{1}{1000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{2\times 167\times 10^{-43}\times 81\times 9}}
Multipliqueu 2232 per \frac{1}{1000000000000000000000000} per obtenir \frac{279}{125000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{334\times 10^{-43}\times 81\times 9}}
Multipliqueu 2 per 167 per obtenir 334.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{334\times \frac{1}{10000000000000000000000000000000000000000000}\times 81\times 9}}
Calculeu 10 elevat a -43 per obtenir \frac{1}{10000000000000000000000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{\frac{167}{5000000000000000000000000000000000000000000}\times 81\times 9}}
Multipliqueu 334 per \frac{1}{10000000000000000000000000000000000000000000} per obtenir \frac{167}{5000000000000000000000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{\frac{13527}{5000000000000000000000000000000000000000000}\times 9}}
Multipliqueu \frac{167}{5000000000000000000000000000000000000000000} per 81 per obtenir \frac{13527}{5000000000000000000000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\sqrt{\frac{121743}{5000000000000000000000000000000000000000000}}}
Multipliqueu \frac{13527}{5000000000000000000000000000000000000000000} per 9 per obtenir \frac{121743}{5000000000000000000000000000000000000000000}.
\frac{\frac{279}{125000000000000000000000}}{\frac{\sqrt{121743}}{\sqrt{5000000000000000000000000000000000000000000}}}
Torneu a escriure l'arrel quadrada de la divisió \sqrt{\frac{121743}{5000000000000000000000000000000000000000000}} com a divisió d'arrels quadrades \frac{\sqrt{121743}}{\sqrt{5000000000000000000000000000000000000000000}}.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{167}}{\sqrt{5000000000000000000000000000000000000000000}}}
Aïlleu la 121743=27^{2}\times 167. Torna a escriure l'arrel quadrada del producte \sqrt{27^{2}\times 167} com a producte d'arrel quadrada \sqrt{27^{2}}\sqrt{167}. Calculeu l'arrel quadrada de 27^{2}.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{167}}{1000000000000000000000\sqrt{5}}}
Aïlleu la 5000000000000000000000000000000000000000000=1000000000000000000000^{2}\times 5. Torna a escriure l'arrel quadrada del producte \sqrt{1000000000000000000000^{2}\times 5} com a producte d'arrel quadrada \sqrt{1000000000000000000000^{2}}\sqrt{5}. Calculeu l'arrel quadrada de 1000000000000000000000^{2}.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{167}\sqrt{5}}{1000000000000000000000\left(\sqrt{5}\right)^{2}}}
Racionalitzeu el denominador de \frac{27\sqrt{167}}{1000000000000000000000\sqrt{5}} multiplicant el numerador i el denominador per \sqrt{5}.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{167}\sqrt{5}}{1000000000000000000000\times 5}}
L'arrel quadrada de \sqrt{5} és 5.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{835}}{1000000000000000000000\times 5}}
Per multiplicar \sqrt{167} i \sqrt{5}, Multipliqueu els números sota l'arrel quadrada.
\frac{\frac{279}{125000000000000000000000}}{\frac{27\sqrt{835}}{5000000000000000000000}}
Multipliqueu 1000000000000000000000 per 5 per obtenir 5000000000000000000000.
\frac{279\times 5000000000000000000000}{125000000000000000000000\times 27\sqrt{835}}
Dividiu \frac{279}{125000000000000000000000} per \frac{27\sqrt{835}}{5000000000000000000000} multiplicant \frac{279}{125000000000000000000000} pel recíproc de \frac{27\sqrt{835}}{5000000000000000000000}.
\frac{31}{3\times 25\sqrt{835}}
Anul·leu 9\times 5000000000000000000000 tant al numerador com al denominador.
\frac{31\sqrt{835}}{3\times 25\left(\sqrt{835}\right)^{2}}
Racionalitzeu el denominador de \frac{31}{3\times 25\sqrt{835}} multiplicant el numerador i el denominador per \sqrt{835}.
\frac{31\sqrt{835}}{3\times 25\times 835}
L'arrel quadrada de \sqrt{835} és 835.
\frac{31\sqrt{835}}{75\times 835}
Multipliqueu 3 per 25 per obtenir 75.
\frac{31\sqrt{835}}{62625}
Multipliqueu 75 per 835 per obtenir 62625.
Exemples
Equació quadràtica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equació lineal
y = 3x + 4
Aritmètica
699 * 533
Matriu
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equació simultània
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciació
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integració
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}